Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 13, 2018

From acceleration-based semi-active vibration reduction control to functional observer design

Von einer beschleunigungsbasierten semiaktiven Vibrationskontrolle zum Entwurf funktionaler Beobachter
  • Yebin Wang

    Yebin Wang received the B. Eng. degree in Mechatronics Engineering from Zhejiang University, Hangzhou, China, in 1997, M.Eng. degree in Control Theory & Control Engineering from Tsinghua University, Beijing, China, in 2001, and Ph.D. in Electrical Engineering from the University of Alberta, Edmonton, Canada, in 2008. Dr. Wang has been with Mitsubishi Electric Research Laboratories in Cambridge, MA, USA, since 2009, and now is a Senior Principal Research Scientist. From 2001 to 2003 he was a Software Engineer, Project Manager, and Manager of R&D Dept. in industries, Beijing, China. His research interests include nonlinear control and estimation, optimal control, adaptive systems and their applications including mechatronic systems.

    EMAIL logo
    and Kenji Utsunomiya

    Kenji Utsunomiya joined Mitsubishi Electric Corp. in 1997, and received Doctoral degree in Mechanical Engineering from Kyoto University in 2015. He is currently a Manager of Mechatronics Department Multi-body Dynamics Group.

Abstract

This work investigates a functional estimation problem for single input single output linear and nonlinear systems, motivated by its enabling role in acceleration-based semi-active control. Solvability of a linear functional estimation problem is studied from a geometric approach, where the functional dynamics are derived, decomposed, and transformed to expose structural properties. This approach is extended to solve a challenging nonlinear functional observer problem, combining with the exact error linearization. Existence conditions of nonlinear functional observers are established. Simulation verifies existence conditions and demonstrates the effectiveness of the proposed functional observer designs.

Zusammenfassung

Wir untersuchen ein Problem der funktionalen Schätzung für lineare und nicht-lineare Systeme mit einem Eingang und Ausgang, das durch die Anwendung beschleunigungsbasierter semiaktiver Steuerungen motiviert wird. Die Lösbarkeit eines linearen funktionalen Schätzungsproblems wird geometrisch angegangen, wobei die funktionale Dynamik hergeleitet, zerlegt und transformiert wird, um strukturelle Eigenschaften herauszuarbeiten. Diese Vorgehensweise wird erweitert, um ein schwieriges nichtlineares funktionales Schätzungsproblem zu lösen, kombiniert mit einer exakten Fehlerlinearisierung. Existenzbedingungen für nichtlineare funktionale Beobachter werden formuliert. Eine Simulation verifiziert die Existenzbedingungen und demonstriert die Effektivität der vorgeschlagenen Entwürfe funktionaler Beobachter.

About the authors

Yebin Wang

Yebin Wang received the B. Eng. degree in Mechatronics Engineering from Zhejiang University, Hangzhou, China, in 1997, M.Eng. degree in Control Theory & Control Engineering from Tsinghua University, Beijing, China, in 2001, and Ph.D. in Electrical Engineering from the University of Alberta, Edmonton, Canada, in 2008. Dr. Wang has been with Mitsubishi Electric Research Laboratories in Cambridge, MA, USA, since 2009, and now is a Senior Principal Research Scientist. From 2001 to 2003 he was a Software Engineer, Project Manager, and Manager of R&D Dept. in industries, Beijing, China. His research interests include nonlinear control and estimation, optimal control, adaptive systems and their applications including mechatronic systems.

Kenji Utsunomiya

Kenji Utsunomiya joined Mitsubishi Electric Corp. in 1997, and received Doctoral degree in Mechanical Engineering from Kyoto University in 2015. He is currently a Manager of Mechatronics Department Multi-body Dynamics Group.

References

1. D. C. Karnopp, M. J. Crosby, and R. A. Harwood, “Vibration control using semi-active force suspension,” Trans. ASME, J. Eng. Ind., vol. 96, no. 2, pp. 619–626, 1974.10.1115/1.3438373Search in Google Scholar

2. E. J. Krasnicki, “Comparison of analytical and experimental results for a semi-active vibration isolator,” in Shock and Vibration Bulletin, vol. 50. Washington, DC: The Shock and Vibration Information Center, Naval Research Laboratory, 1980.Search in Google Scholar

3. S. J. Dyke, B. F. Spencer Jr., M. K. Sain, and J. D. Carlson, “Modeling and control of magnetorheological dampers for seismic response reduction,” Smart Mater. Struct., vol. 5, no. 5, pp. 565–575, Oct. 1996.10.1088/0964-1726/5/5/006Search in Google Scholar

4. H. Du, S. K. Yim, and J. Lam, “Semi-active H control of vehicle suspension with magneto-rheological dampers,” J. Sound Vib., vol. 283, no. 3–5, pp. 981–996, May 2005.10.1016/j.jsv.2004.05.030Search in Google Scholar

5. D. Hrovat, D. L. Margolis, and M. Hubbard, “An approach toward the optimal semi-active suspension,” Trans. ASME, J. Dyn. Sys. Meas. Control, vol. 111, no. 3, pp. 288–296, 1988.10.1115/1.3152684Search in Google Scholar

6. H. E. Tseng and J. K. Hedrick, “Semi-active control laws-optimal and sub-optimal,” Vehicle Syst. Dyn., vol. 23, no. 1, pp. 545–569, 1994.10.1080/00423119408969074Search in Google Scholar

7. G. Leitmann, “Semi-active control for vibration attenuation,” J. Intel. Mat. Syst. Str., vol. 5, no. 6, pp. 841–846, 1994.10.1177/1045389X9400500616Search in Google Scholar

8. S. Ohsaku, T. Nakayama, I. Kamimura, and Y. Motozono, “Nonlinear H control for semi-active suspension,” JSAE Review, vol. 20, no. 4, pp. 447–452, 1999.10.1016/S0389-4304(99)00053-3Search in Google Scholar

9. S. M. Savaresi and C. Spelta, “Mixed Sky-Hook and ADD: approaching the filtering limits of a semi-active suspension,” Trans. ASME, J. Dyn. Sys. Meas. Control, vol. 129, no. 4, pp. 382–392, Jul. 2007.10.1115/1.2745846Search in Google Scholar

10. Y. Wang and K. Utsunomiya, “A sub-optimal control design of a semi-active vibration reduction system,” in Proc. 2013 ACC, Washington, DC, 2013, pp. 4110–4115.Search in Google Scholar

11. M. Darouach, “Existence and design of functional observers for linear systems,” IEEE Trans. Automat. Control, vol. 45, no. 5, pp. 940–943, May 2000.10.1109/9.855556Search in Google Scholar

12. T. L. Fernando, H. M. Trinh, and L. Jennings, “Functional observability and the design of minimum order linear functional observers,” IEEE Trans. Automat. Control, vol. 55, no. 5, pp. 1268–1273, May 2010.10.1109/TAC.2010.2042761Search in Google Scholar

13. X. Xia and W. Gao, “Nonlinear observer design by observer error linearization,” SIAM J. Control Optim., vol. 27, no. 1, pp. 199–216, Jan. 1989.10.1137/0327011Search in Google Scholar

14. Y. Wang and A. F. Lynch, “Multiple time scalings of a multi-output observer form,” IEEE Trans. Automat. Control, vol. 55, no. 4, pp. 966–971, Apr. 2010.10.1109/TAC.2010.2041616Search in Google Scholar

15. J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for nonlinear systems–applications to bioreactors,” IEEE Trans. Automat. Control, vol. 37, no. 6, pp. 875–880, Jun. 1992.10.1109/9.256352Search in Google Scholar

16. M. Hou and R. Patton, “Input observability and input reconstruction,” Automatica, vol. 34, no. 6, pp. 789–794, Jun. 1998.10.1016/S0005-1098(98)00021-1Search in Google Scholar

17. T. Chen and B. A. Francis, Optimal Sampled-data Control systems. New York: Springer-Verlag, 1995.10.1007/978-1-4471-3037-6Search in Google Scholar

18. N. Giorgetti, A. Bemporad, H. E. Tseng, and D. Hrovat, “Hybrid model predictive control application towards optimal semi-active suspension,” Int. J. Control, vol. 79, no. 5, pp. 521–533, May 2006.10.1080/00207170600593901Search in Google Scholar

19. M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.10.1016/j.automatica.2004.11.034Search in Google Scholar

20. R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33, no. 12, pp. 2159–2177, Dec. 1997.10.1016/S0005-1098(97)00128-3Search in Google Scholar

Received: 2017-6-13
Accepted: 2018-2-23
Published Online: 2018-3-13
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2017-0064/html
Scroll to top button