Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 10, 2018

Multi-DOF compensation of piezoelectric actuators with recursive databases

Mehrdimensionale Kompensation piezoelektrischer Aktoren mittels rekursiver Datenbasen
  • Christopher Schindlbeck

    Christopher Schindlbeck is a research assistant of the control engineering working group at the Institute of Measurement and Automatic Control at the Leibniz Universiät Hannover. He received his Diplom degree in mathematics in science and engineering at the Technical University of Munich in 2012. His research interests include control theory, robotics, optics, and machine learning.

    EMAIL logo
    , Christian Pape

    Christian Pape is the head of the control engineering working group at the Institute of Measurement and Automatic Control at the Leibniz Universiät Hannover, where he worked in the robotics and control engineering lab and received his doctoral degree in 2011. His research interests include robotics and control engineering, image-based control and in-process metrology.

    and Eduard Reithmeier

    Eduard Reithmeier has been the head of the Institute of Measurement and Automatic Control since 1996. Prior to this time, he was employed as the technical director of the Bodenseewerk Gerätetechnik GmbH. His current research interests include production metrology, in-process metrology, optical metrology, control engineering, active noise cancellation and biomedical engineering.

Abstract

Piezoelectric actuators are subject to nonlinear effects when voltage-driven in open-loop control. In particular, hysteresis and creep effects are dominating nonlinearities that significantly deteriorate performance in tracking control scenarios. In this paper, we present an online compensator suitable for piezoelectric actuators that is based on the modified Prandtl-Ishlinskii model and utilizes recursive databases for the compensation of nonlinearities. The compensator scheme is furthermore extended to systems with more than one degree of freedom (DOF) such as Cartesian manipulators by employing a decoupling control design to mitigate inherent cross-coupling disturbances. In order to validate our theoretical derivations, experiments are conducted with coupled trajectories on a commercial 3-DOF micro-positioning unit driven by piezoelectric actuators.

Zusammenfassung

Spannungsgesteuerte piezoelektrische Aktoren unterliegen dominanten nichtlinearen Effekten. Dabei sorgen insbesondere Hysterese- und Kriecheffekte für einen signifikanten Performanzverlust bei Folgesteuerungen. Für die Kompensation der genannten Nichtlinearitäten präsentieren wir hier einen Online-Kompensator auf der Basis eines modifizierten Prandtl-Ishlinskii Models mittels rekursiver Datenbasen. Dieses Kompensationsverfahren kann auch für Systeme mit mehreren Freiheitsgraden, wie beispielsweise kartesische Manipulatoren, mittels einer Entkopplungssteuerung zur Minderung der inhärenten mechanischen Kopplungseffekte erweitert werden. Für die Validierung der theoretischen Herleitungen werden gekoppelte Trajektorien auf einer kommerziellen piezo-getriebenen Mikropositioniereinheit mit mehreren Freiheitsgraden ausgeführt.

About the authors

Christopher Schindlbeck

Christopher Schindlbeck is a research assistant of the control engineering working group at the Institute of Measurement and Automatic Control at the Leibniz Universiät Hannover. He received his Diplom degree in mathematics in science and engineering at the Technical University of Munich in 2012. His research interests include control theory, robotics, optics, and machine learning.

Christian Pape

Christian Pape is the head of the control engineering working group at the Institute of Measurement and Automatic Control at the Leibniz Universiät Hannover, where he worked in the robotics and control engineering lab and received his doctoral degree in 2011. His research interests include robotics and control engineering, image-based control and in-process metrology.

Eduard Reithmeier

Eduard Reithmeier has been the head of the Institute of Measurement and Automatic Control since 1996. Prior to this time, he was employed as the technical director of the Bodenseewerk Gerätetechnik GmbH. His current research interests include production metrology, in-process metrology, optical metrology, control engineering, active noise cancellation and biomedical engineering.

References

1. C. Schindlbeck, A. Janz, C. Pape and E. Reithmeier, “Increasing milling precision for macro-micro-manipulators with disturbance rejection control via visual feedback,” in IEEE/RSJ IROS, 2017.10.1109/IROS.2017.8206340Search in Google Scholar

2. G.-Y. Gu, L.-M. Zhu, C.-Y. Su, H. Ding and S. Fatikow, “Modeling and control of piezo-actuated nanopositioning stages: A survey,” IEEE Trans. Automat. Sci. Eng., vol. 13, no. 1, pp. 313–332, 2016.10.1109/TASE.2014.2352364Search in Google Scholar

3. K. Kuhnen, Kompensation komplexer gedächtnisbehafteter Nichtlinearitäten in Systemen mit aktiven Materialien: Grundlagen – erweiterte Methoden – Anwendungen, ser. Berichte aus der Steuerungs- und Regelungstechnik. Shaker, 2008.Search in Google Scholar

4. D. Pesotski, Echtzeit-Kompensation von komplexen hysterese-und kriechbehafteten Nichtlinearitäten am Beispiel von Festkörperaktoren. Logos Verlag Berlin GmbH, 2011.Search in Google Scholar

5. C. Schindlbeck, C. Pape and E. Reithmeier, “Recursive online compensation of piezoelectric nonlinearities via a modified prandtl-ishlinskii approach,” in Proc. of the 20th IFAC World Congress, Toulouse, 2017.10.1016/j.ifacol.2017.08.1881Search in Google Scholar

6. M. Rakotondrabe, “Modeling and compensation of multivariable creep in multi-dof piezoelectric actuators,” in IEEE International Conference on Robotics and Automation, 2012, pp. 4577–4581.10.1109/ICRA.2012.6224554Search in Google Scholar

7. M. Rakotondrabe, “Multivariable classical prandtl–ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator,” Nonlinear Dynamics, pp. 1–19, 2017.10.1007/s11071-017-3466-5Search in Google Scholar

8. D. Habineza, M. Rakotondrabe and Y. Le Gorrec, “Bouc–wen modeling and feedforward control of multivariable hysteresis in piezoelectric systems: application to a 3-dof piezotube scanner,” IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1797–1806, 2015.10.1109/TCST.2014.2386779Search in Google Scholar

9. Z. Guo, Y. Tian, X. Liu, B. Shirinzadeh, F. Wang and D. Zhang, “An inverse prandtl–ishlinskii model based decoupling control methodology for a 3-dof flexure-based mechanism,” Sensors and Actuators A: Physical, vol. 230, pp. 52–62, 2015.10.1016/j.sna.2015.04.018Search in Google Scholar

10. B. Hu, H.-T. Zhang and Z.-Y. Chen, “Nonlinear cross-coupling of a 2-dof piezoelectric actuator with multi-channel hammerstein model,” in IEEE Chinese Control Conference, 2017, pp. 1196–1201.10.23919/ChiCC.2017.8027511Search in Google Scholar

11. C. Schindlbeck, C. Pape and E. Reithmeier, “Two degree-of-freedom online compensation of a piezoelectric micro-positioning unit,” in Proc. Appl. Math. Mech., 2017.10.1002/pamm.201710375Search in Google Scholar

12. V. Kucera, “Diagonal decoupling of linear systems by static state feedback,” IEEE Transactions on Automatic Control, 2017.10.1109/TAC.2017.2710098Search in Google Scholar

Received: 2017-12-18
Accepted: 2018-07-17
Published Online: 2018-08-10
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2017-0136/html
Scroll to top button