Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 5, 2018

Impact of trajectory profiles on user stress in close human-robot interaction

Einfluss von Trajektorienprofilen auf den Nutzerstress bei der engen Mensch-Roboter-Interaktion
  • Barbara Kühnlenz

    Dr.-Ing. Barbara Kühnlenz is senior researcher and lecturer at Cooperative Robotics Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots and social psychological approaches to human-robot interaction.

    , Maximilian Erhart

    Maximilian Erhart is Bachelor student of automation and robotics.

    , Marcel Kainert

    Marcel Kainert is Bachelor student of automation and robotics.

    , Zhi-Qiao Wang

    Zhi-Qiao Wang is Bachelor student of automation and robotics.

    , Julian Wilm

    Julian Wilm is Bachelor student of automation and robotics.

    and Kolja Kühnlenz

    Prof. Dr.-Ing. habil. Kolja Kühnlenz is endowed research professor, professor of robotics and head of the Cooperative Robotics Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots, vision-guided robotics and networked robotics.

    EMAIL logo

Abstract

The impact of different trajectory embodiments in terms of velocity profiles on users’ mental stress in close human-robot interaction is investigated. A cooperative assembly scenario is chosen using a standard industrial robot. Conditions are implemented in a repeated measures within-subjects design comparing linear with trapezoidal trajectories. Heart rate variability and galvanic skin conductance are chosen as objective stress markers and evaluated using the average standard deviation of the beat-to-beat intervals (SDNN) and the average skin resistance. Additionally, evaluations of user experience and acceptance are conducted based on evaluated subjective measures. The results of the user study reveal a significant increase of average heart rate variability and average skin resistance in the trapezoidal condition indicating a reduced mental stress level independent of demographical and dispositional factors.

Zusammenfassung

Dieser Artikel untersucht den Einfluss verschiedener Geschwindigkeitsprofile von Trajektorienausführungen auf den Nutzerstress bei der engen Mensch-Roboter-Interaktion am Beispiel eines kooperativen Fügeszenarios mit einem Standardindustrieroboter. Zwei Konditionen wurden in Form von linearen und trapezförmigen Trajektorien in einem Studiendesign mit Messwiederholungen implementiert. Herzratenvariabilität und Hautleitwert dienen als objektive Stressmarker, wobei die mittlere Standardabweichung der Beat-to-Beat-Intervalle (SDNN) und der mittlere Hautwiderstand ausgewertet werden. Zusätzlich werden Daten der User Experience und Akzeptanz auf Basis evaluierter Tests erhoben. Die Studienergebnisse zeigen einen signifikanten Anstieg von Herzratenvariabilität und Hautwiderstand bei trapezförmigen Trajektorien und damit ein geringeres Nutzerstressniveau unabhängig von demographischen und dispositionalen Faktoren.

Funding statement: This work is supported in part by the Bavarian State Ministry for Education, Science and the Arts (Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst), the Federal Ministry of Education and Research (BMBF), and the German research foundation (DFG).

About the authors

Barbara Kühnlenz

Dr.-Ing. Barbara Kühnlenz is senior researcher and lecturer at Cooperative Robotics Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots and social psychological approaches to human-robot interaction.

Maximilian Erhart

Maximilian Erhart is Bachelor student of automation and robotics.

Marcel Kainert

Marcel Kainert is Bachelor student of automation and robotics.

Zhi-Qiao Wang

Zhi-Qiao Wang is Bachelor student of automation and robotics.

Julian Wilm

Julian Wilm is Bachelor student of automation and robotics.

Kolja Kühnlenz

Prof. Dr.-Ing. habil. Kolja Kühnlenz is endowed research professor, professor of robotics and head of the Cooperative Robotics Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots, vision-guided robotics and networked robotics.

References

1. Bartneck, C., Kulic, D. and Croft, E., “Measuring the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots.” In: Proceedings of the Metrics for Human-Robot Interaction Workshop, 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2008.Search in Google Scholar

2. Chaminade, T., Franklin, D., Oztop, E. and Cheng, G.: “Motor interference between humans and humanoid robots: Effect of biological and artificial motion.” In: Proceedings of the IEEE International Conference on Development and Learning (ICDL), 2005.Search in Google Scholar

3. Cook, J., Saygin, A. P., Swain, R. and Blakemore, S.-J.: “Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions.” Neuropsychologia, Vol. 47, No. 14, pp. 3275–3278, 2009.10.1016/j.neuropsychologia.2009.07.010Search in Google Scholar

4. Dishman, R. K., Nakamura, Y., Garcia M. E., Thompson R. W., Dunn A. L. and Blair S. N.: “Heart rate variability, trait anxiety, and perceived stress among physically fit men and women.” International Journal of Psychophysiology, Elsevier, 37(2), pp. 121–133, 2000.10.1016/S0167-8760(00)00085-4Search in Google Scholar

5. Flash, T. and Hogan, N.: “The coordination of arm movements: an experimentally confirmed mathematical model.” Journal of Neuroscience, Vol. 5, No. 7, 1985, pp. 1688–1703.10.1523/JNEUROSCI.05-07-01688.1985Search in Google Scholar

6. Gonsior, B., Sosnowski, S., Buß, M., Wollherr, D. and Kühnlenz, K.: “An emotional adaption approach to increase helpfulness towards a robot.” In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2012.Search in Google Scholar

7. Heerink, M., Krose, B., Evers, V. and Wielinga, B., “Measuring acceptance of an assistive social robot: a suggested toolkit.” In: Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2009.Search in Google Scholar

8. Huber, M., Rickert, M., Knoll, A., Brandt, T. and Glasauer, S.: “Human-robot interaction in handing-over tasks.” In: Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2008.Search in Google Scholar

9. Kilner, J., Paulignan, Y. and Blakemore, S.: “An interference effect of observed biological movement on action.” Current Biology, Vol. 13, No. 6, 2003, pp. 522–525.10.1016/S0960-9822(03)00165-9Search in Google Scholar

10. Kilner, J., Hamilton, A. and Blakemore, S.: “Interference effect of observed human movement on action is due to velocity profile of biological motion.” Social Neuroscience, Vol. 2, No. 3, 2007, pp. 158–166.10.1080/17470910701428190Search in Google Scholar PubMed

11. Kühnlenz, B.: Alignment Strategies for Informatio Retrieval in Prosocial Human-Robot Interaction, Dissertation, Fakultät für Elektrotechnik und Informationstechnik, Lehrstuhl für Steuerungs- und Regelungstechnik, Technische Universität München (TUM), 2013, URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20131126-1163030-0-6.Search in Google Scholar

12. Kühnlenz, B. and Kühnlenz, K.: “Reduction of Heart Rate by Robot Trajectory Profiles in Cooperative HRI.” In: Proceedings of the 47th International Symposium of Robotics, 2016.Search in Google Scholar

13. Kulic, D. and Croft, E.: “Anxiety detection during human-robot interaction.” In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2005.Search in Google Scholar

14. Kulić, D. and Croft, E.: “Physiological and subjective responses to articulated robot motion.” Robotica, Vol. 25, No. 1, pp. 13–27, 2007.10.1017/S0263574706002955Search in Google Scholar

15. Kupferberg, A., Glasauer, S., Huber, M., Rickert, M., Knoll, A. and Brandt, T.: “Biological movement increases acceptance of humanoid robots as human partners in motor interaction.” AI & Society, Vol. 26, No. 4, Springer, 2011, pp. 339–345.10.1007/s00146-010-0314-2Search in Google Scholar

16. Lang, P. J.: “Behavioral treatment and bio-behavioral assessment: computer applications.” In: J. B. Sidowski, J. H. Johnson, and T. A. Williams (Eds.), Technology in mental health care delivery systems, 1980, Norwood, NJ: Ablex, pp. 119–137.Search in Google Scholar

17. Lin, H.-P., Lin, H.-Y., Lin, W.-L., and Huang, A. C. W.: “Effects of stress, depression, and their interaction on heart rate, skin conductance, finger temperature, and respiratory rate: Sympathetic-parasympathetic hypothesis of stress and depression.” Journal of Clinical Psychology, Vol. 67, No. 10, 2011, pp. 1080–1091.10.1002/jclp.20833Search in Google Scholar PubMed

18. Liu, C., Agrawal, P., Sarkar, N., and Chen, S.: “Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback.” International Journal of Human-Computer Interaction, Vol. 25, No. 6, 2009, pp. 506–529.10.1080/10447310902963944Search in Google Scholar

19. Mehrabian, A.: Basic dimensions for a general psychological theory: Implications for Personality, Social, Environmental, and Developmental Studies. Oelgeschlager: Gunn & Hain, 1980.Search in Google Scholar

20. Oztop, E., Franklin, D., Chaminade, T., and Cheng, G.: “Human-humanoid interaction: Is a humanoid robot perceived as a human?” International Journal of Humanoid Robots, Vol. 2, 2005, pp. 537–559.10.1142/S0219843605000582Search in Google Scholar

21. Pfaff, D. W.: Brain Arousal and Information Theory. Neural and Genetic Mechanisms. Boston: Harvard University Press, 2009.Search in Google Scholar

22. Picard, R. W.: Affective Computing. MIT Press, 1997.10.1037/e526112012-054Search in Google Scholar

23. Taelman, J., Vandeput, S., Spaepen, A., and van Huffel, S.: “Influence of Mental Stress on Heart Rate and Heart Rate Variability.” In: Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering: (ECIFMBE), 2008.Search in Google Scholar

24. Vrijkotte, T. G. M., van Doormen, L. J. P., and de Geus, E. J. C.: “Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability.” Hypertension, Vol. 35, 2000, pp. 880–886.10.1161/01.HYP.35.4.880Search in Google Scholar

25. Welch, K. C., Lahiri, U., Sarkar, N., Warren, Z., Stone, W., and Liu, C.: “Affect-sensitive computing and autism.” In: Affective Computing and Interaction: Psychological, Cognitive, and Neuroscientific Perspectives. D. Gökcay and G. Yildirim (Eds.), Hershey, Pennsylvania: IGI Global, 2011.Search in Google Scholar

Received: 2018-1-17
Accepted: 2018-2-20
Published Online: 2018-6-5
Published in Print: 2018-6-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2018-0004/html
Scroll to top button