Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 27, 2019

Zur Homogenisierung von Testsignalen für die nichtlineare Systemidentifikation

On the homogenization of test signals for nonlinear system identification
  • Matthias Gringard

    Dipl.-Ing. Matthias Gringard ist wissenschaftlicher Mitarbeiter am Fachgebiet Mess- und Regelungstechnik der Universität Kassel. Sein Forschungsschwerpunkt ist der Testsignalentwurf für nichtlineare dynamische Systeme.

    EMAIL logo
    and Andreas Kroll

    Univ.-Prof. Dr.-Ing. Andreas Kroll ist Leiter des Fachgebiets Mess- und Regelungstechnik der Universität Kassel. Seine Forschungsschwerpunkte sind nichtlineare Identifikations- und Regelungsmethoden, Computational Intelligence, komplexe Systeme.

Zusammenfassung

In diesem Beitrag werden Methoden zum Entwurf von Multisinus- und Multistufensignalen zur Identifikation nichtlinearer dynamischer Takagi-Sugeno-Fuzzy-Modelle vorgestellt. Diese Entwurfsmethoden arbeiten prozessmodellfrei. Sie werden am Beispiel der Modellierung eines elektromechanischen Stellglieds eines Verbrennungsmotors demonstriert.

Abstract

In this contribution methods for designing multisine and multistep signals for the identification of nonlinear dynamical Takagi-Sugeno fuzzy models are presented. These design methods do not require a process model. They are demonstrated on example of modeling an electro-mechanical actuator of a combustion engine.

Award Identifier / Grant number: KR 3795/7-1

Funding statement: Die Forschungsarbeit wird durch die Deutsche Forschungsgemeinschaft (DFG) unterstützt, Projektnummer KR 3795/7-1.

About the authors

Dipl.-Ing. Matthias Gringard

Dipl.-Ing. Matthias Gringard ist wissenschaftlicher Mitarbeiter am Fachgebiet Mess- und Regelungstechnik der Universität Kassel. Sein Forschungsschwerpunkt ist der Testsignalentwurf für nichtlineare dynamische Systeme.

Univ.-Prof. Dr.-Ing. Andreas Kroll

Univ.-Prof. Dr.-Ing. Andreas Kroll ist Leiter des Fachgebiets Mess- und Regelungstechnik der Universität Kassel. Seine Forschungsschwerpunkte sind nichtlineare Identifikations- und Regelungsmethoden, Computational Intelligence, komplexe Systeme.

Danksagung

Es wird den Gutachtern für die Anmerkungen und Anregungen gedankt.

Literatur

1. K. Godfrey, Perturbation signals for system identification. Prentice Hall, 1993.Search in Google Scholar

2. G. C. Goodwin and R. L. Payne, Dynamic System Identification: Experiment Design and Data Analysis. Academic Press, 1977.Search in Google Scholar

3. R. Pintelon and J. Schoukens, System identification: A frequency domain approach. New York: Wiley-IEEE Press, 2012.10.1002/9781118287422Search in Google Scholar

4. V. Fedorov, Theory of Optimal Experiment Designs. Elsevier, 1972.Search in Google Scholar

5. G. Franceschini and S. Macchietto, “Model-based design of experiments for parameter precision: State of the art,” Chemical Engineering Science, Vol. 63, Nr. 19, S. 4846–4872, 2008.10.1016/j.ces.2007.11.034Search in Google Scholar

6. L. Pronzato, “Optimal experimental design and some related control problems,” Automatica, Vol. 44, Nr. 2, S. 303–325, 2008.10.1016/j.automatica.2007.05.016Search in Google Scholar

7. H. Suzuki and M. Yamakita, “Input design for hybrid system identification for accurate estimation of submodel regions,” in Proceedings of the 2011 American Control Conference, 2011, S. 1236–1241.10.1109/ACC.2011.5990780Search in Google Scholar

8. C. Hametner, M. Stadlbauer, M. Deregnaucourt, S. Jakubek and T. Winsel, “Optimal Experiment Design Based on Local Model Networks and Multilayer Perceptron Networks,” Engineering Applications of Artificial Intelligence, Vol. 26, Nr. 1, S. 251–261, 2013.10.1016/j.engappai.2012.05.016Search in Google Scholar

9. T. O. Heinz and O. Nelles, “Iterative Excitation Signal Design for Nonlinear Dynamic Black-Box Models,” Procedia Computer Science, S. 1054–1061, 2017.10.1016/j.procs.2017.08.112Search in Google Scholar

10. T. O. Heinz and O. Nelles, “Excitation signal design for nonlinear dynamic systems with multiple inputs – A data distribution approach,” at – Automatisierungstechnik, Vol. 66, Nr. 9, S. 714–724, 2018.10.1515/auto-2018-0027Search in Google Scholar

11. M. Gringard and A. Kroll, “On the parametrization of APRBS and multisine test signals for the identification of nonlinear dynamic TS-models,” in IEEE Symposium Series of Computational Intelligence 2016, Athens, Greece, 2016, S. 39–60.10.1109/SSCI.2016.7849984Search in Google Scholar

12. A. Kroll, “On choosing the fuzziness parameter for identifying TS models with multidimensional membership functions,” Journal of Artificial Intelligence and Soft Computing Research, Vol. 1, Nr. 4, S. 283–300, 2011.Search in Google Scholar

13. S. Juhász, C. Legány and A. Babos, “Cluster validity measurement techniques,” in International Conference of Artificial Intelligence, Knowledge Engineering and Data Bases, 2006, S. 388–393.Search in Google Scholar

14. M. Kahl, A. Kroll, R. Kästner and M. Sofsky, “Application of model selection methods for the identification of a dynamic boost pressure model,” in Proceedings of the 17th IFAC Symposium on System Identification (SysID), Beijing, China, 2015, S. 829–834.10.1016/j.ifacol.2015.12.232Search in Google Scholar

15. R. Babuška, Fuzzy Modeling for Control. Springer Netherlands, 1998.10.1007/978-94-011-4868-9Search in Google Scholar

16. MathWorks, Optimization Toolbox User’s Guide, 2019.Search in Google Scholar

17. M. Schroeder, “Synthesis of Low-peak-factor Signals and Binary Sequences with Low Autocorrelation,” IEEE Trans. Inf. Theor., Vol. 16, Nr. 1, S. 85–89, 2006.10.1109/TIT.1970.1054411Search in Google Scholar

18. S. Duym and J. Schoukens, “Design of excitation signals for the restoring force surface method,” Mechanical Systems and Signal Processing, Vol. 9, Nr. 2, S. 139–158, 1995.10.1006/mssp.1995.0012Search in Google Scholar

19. S. Zaidi and A. Kroll, “Electro-Mechanical Throttle as a Benchmark Problem for Nonlinear System Identification with Friction,” in 24. Workshop Computational Intelligence. Dortmund: KIT Scientific Publishing, 2014, S. 173–186.Search in Google Scholar

20. Z. Ren, A. Kroll, M. Sofsky and F. Laubenstein, “On identification of piecewise-affine models for systems with friction and its application to electro-mechanical throttles,” in 16th IFAC Symposium on System Identification (SysID), Brussels, Belgium, 2012, S. 1395–1400.10.3182/20120711-3-BE-2027.00137Search in Google Scholar

Received: 2019-03-28
Accepted: 2019-08-23
Published Online: 2019-09-27
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2019-0041/html
Scroll to top button