Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 3, 2020

On complexity reduction of the discrete-event subsystem of Flat Hybrid Automata for control design

Ein Ansatz zur Komplexitätsreduktion des diskreten Subsystems Flacher Hybrider Automaten für den Steuerungsentwurf
  • Tobias Kleinert

    Tobias Kleinert graduated in Mechanical Engineering in 1999 at RWTH Aachen University and completed his PhD in 2005 at the Chair of Automation and Computer Control of Prof. Jan Lunze at Ruhr-Universität Bochum. His career led him to BASF SE where he worked in the areas of Advanced Process Control, Production Technology Propylene Oxide, Regulated Automation Solutions, Digital Control Systems, Manufacturing Execution Solutions and Smart Manufacturing. As senior manager automation and digitalization he had assignments at the BASF sites in Ludwigshafen/D, Antwerp/B and Schwarzheide/D. In 2020, he assumed the professorship in information and automation systems for process and material technology at the Chair of Process Control Engineering at RWTH Aachen University.

    , Frederik Zahn

    Frederik Zahn received a Bachelor of Science in Engineering Science from Technical University of Munich in 2016 and a Master of Science in Mechanical Engineering from Karlsruhe Institute of Technology in 2019. He is currently pursuing doctoral studies in the fields of hybrid systems and control at the Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology.

    EMAIL logo
    and Veit Hagenmeyer

    Prof. Dr. Veit Hagenmeyer is the Director of the Institute for Automation and Applied Informatics (IAI) at Karlsruhe Institute of Technology (KIT). Main fields of interest: automation, control, energy informatics, mechatronics.

Abstract

The class of hybrid systems describes most technical systems in great detail. However, the respective models and their behavior tend to be very complex. Recently, a new subclass of hybrid automata has been introduced, the Flat Hybrid Automata (FHA) that relies on the concepts of differential flatness for the continuous parts, and strongly connected automaton graphs for the discrete event part, in order to deal with the complexity from a design perspective. Therefore, we introduce in the present paper an approach to reduce the automaton graph of an FHA in a systematic way by removing edges from the adjacency matrix. The main contribution of the paper is twofold: Firstly, based on practical considerations we develop a heuristic algorithm to reduce the automaton graph. Secondly, we present possible ways to include knowledge about the system in the reduction.

Zusammenfassung

Das dynamische Verhalten vieler technischer Systeme lässt sich durch hybride Systeme gut beschreiben. Allerdings können die Modelle und deren dynamisches Verhalten einen hohen Komplexitätsgrad aufweisen. Zur Handhabung der Komplexität beim Systementwurf wurden kürzlich Flache Hybride Automaten (FHA) als neue Subklasse hybrider Automaten vorgestellt. Das Konzept basiert auf der differentiellen Flachheit der kontinuierlichen Teilsysteme und auf streng zusammenhängenden Automatengraphen der ereignisdiskreten Teilsysteme. Im vorliegenden Beitrag wird ein Ansatz zur systematischen Reduktion des ereignisdiskreten Subsystems eines FHA für den Systementwurf vorgestellt, basierend auf dem Entfernen von Kanten aus dem Automatengraphen. Dazu wird zum einen ein parametrierbarer, heuristischer Algorithmus zur schrittweisen Anpassung der Transitionsmatrix vorgestellt und zum anderen werden mögliche Ansätze zur Nutzung von Strukturinformation über das System aufgezeigt.


This contribution is dedicated to Prof. Dr.-Ing. Dr. h.c. Michael Zeitz on the occasion of his 80th birthday.


About the authors

Tobias Kleinert

Tobias Kleinert graduated in Mechanical Engineering in 1999 at RWTH Aachen University and completed his PhD in 2005 at the Chair of Automation and Computer Control of Prof. Jan Lunze at Ruhr-Universität Bochum. His career led him to BASF SE where he worked in the areas of Advanced Process Control, Production Technology Propylene Oxide, Regulated Automation Solutions, Digital Control Systems, Manufacturing Execution Solutions and Smart Manufacturing. As senior manager automation and digitalization he had assignments at the BASF sites in Ludwigshafen/D, Antwerp/B and Schwarzheide/D. In 2020, he assumed the professorship in information and automation systems for process and material technology at the Chair of Process Control Engineering at RWTH Aachen University.

Frederik Zahn

Frederik Zahn received a Bachelor of Science in Engineering Science from Technical University of Munich in 2016 and a Master of Science in Mechanical Engineering from Karlsruhe Institute of Technology in 2019. He is currently pursuing doctoral studies in the fields of hybrid systems and control at the Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology.

Veit Hagenmeyer

Prof. Dr. Veit Hagenmeyer is the Director of the Institute for Automation and Applied Informatics (IAI) at Karlsruhe Institute of Technology (KIT). Main fields of interest: automation, control, energy informatics, mechatronics.

Acknowledgment

We want to thank the anonymous reviewers who provided valuable remarks that improved the quality of the present paper considerably.

References

1. Bang-Jensen, J. and A. Yeo (2008): “The minimum spanning strong subdigraph problem is fixed parameter tractable,” Discrete Applied Mathematics, 156, 2924–2929.10.1016/j.dam.2007.12.003Search in Google Scholar

2. Berman, A. and R. Plemmons (1979): Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York.10.1016/B978-0-12-092250-5.50009-6Search in Google Scholar

3. Bestle, D. and M. Zeitz (1983): “Canonical form observer design for non-linear time-variable systems,” International Journal of control, 38, 419–431.10.1080/00207178308933084Search in Google Scholar

4. Birk, J., J. Schaffner and M. Zeitz (1993): “Rule-based selection of nonlinear observer design methods,” in Nonlinear Control Systems Design 1992, Elsevier, 231–238.10.1016/B978-0-08-041901-5.50043-9Search in Google Scholar

5. Birk, J. and M. Zeitz (1988): “Extended Luenberger observer for non-linear multivariable systems,” International Journal of Control, 47, 1823–1836.10.1080/00207178808906138Search in Google Scholar

6. Birk, J. and M. Zeitz (1990): “Computer-aided design of nonlinear observers,” in Nonlinear Control Systems Design 1989, Elsevier, 1–6.10.1016/B978-0-08-037022-4.50006-5Search in Google Scholar

7. Birk, J. and M. Zeitz (1993): “Computer-aided analysis of nonlinear observation problems,” in Nonlinear Control Systems Design 1992, Elsevier, 257–262.10.1016/B978-0-08-041901-5.50047-6Search in Google Scholar

8. Brunovsky, P. (1970): “A classification of linear controllable systems,” Kybernetika, 6, 173–188.Search in Google Scholar

9. Delaleau, E. and J. Rudolph (1998): “Control of flat systems by quasi-static feedback of generalized states,” International Journal of Control, 71, 745–765.10.1080/002071798221551Search in Google Scholar

10. Diestel, R. (2017): Graph Theory, Graduate Texts in Mathematics, Springer Nature.10.1007/978-3-662-53622-3Search in Google Scholar

11. Faulwasser, T., V. Hagenmeyer and R. Findeisen (2014): “Constrained reachability and trajectory generation for flat systems,” Automatica, 50, 1151–1159.10.1016/j.automatica.2014.02.011Search in Google Scholar

12. Fliess, M., C. Join and H. Sira-Ramirez (2005): Closed-loop fault-tolerant control for uncertain nonlinear systems, Lecture Notes in Control and Information Science 322, Springer, 217–233.10.1007/11529798_14Search in Google Scholar

13. Fliess, M., J. Levine, P. Martin and P. Rouchon (1995): “Flatness and defect of nonlinear systems: Introductory theory and examples,” Int. Journal of Control, 61, 1327–1361.10.1080/00207179508921959Search in Google Scholar

14. Goebel, R., R. G. Sanfelice and A. R. Teel (2009): “Hybrid dynamical systems,” IEEE Control Systems Magazine, 29, 28–93.10.1109/MCS.2008.931718Search in Google Scholar

15. Graichen, K., V. Hagenmeyer and M. Zeitz (2005): “A new approach to inversion-based feedforward control design for nonlinear systems,” Automatica, 41, 2033–2041.10.1016/j.automatica.2005.06.008Search in Google Scholar

16. Graichen, K. and M. Zeitz (2008): “Feedforward control design for finite-time transition problems of nonlinear systems with input and output constraints,” IEEE Transactions on Automatic Control, 53, 1273–1278.10.1109/TAC.2008.921044Search in Google Scholar

17. Hagenmeyer, V. and E. Delaleau (2003a): “Exact feedforward linearisation based on differential flatness: The SISO case,” in Nonlinear and Adaptive Control, Springer, Berlin, Heidelberg, 161–170.10.1007/3-540-45802-6_13Search in Google Scholar

18. Hagenmeyer, V. and E. Delaleau (2003b): “Exact feedforward linearization based on differential flatness,” International Journal of Control, 76, 537–556.10.1080/0020717031000089570Search in Google Scholar

19. Hagenmeyer, V. and M. Zeitz (2004a): “Flachheitsbasierter Entwurf von linearen und nichtlinearen Vorsteuerungen (flatness-based design of linear and nonlinear feedforward controls),” at–Automatisierungstechnik, 52, 3–12.10.1524/auto.52.1.3.25428Search in Google Scholar

20. Hagenmeyer, V. and M. Zeitz (2004b): “Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output,” Systems and control letters, 52, 323–327.10.1016/j.sysconle.2004.02.006Search in Google Scholar

21. Kleinert, T. and V. Hagenmeyer (2019): “Flat Hybrid Automata as a Class of Reachable Systems: Introductory Theory and Examples,” submitted to Automatica, June 2019, preprint: arXiv:1906.02790v1 [cs.SY].Search in Google Scholar

22. Lunze, J. and F. Lamnabhi-Lagarrigue (2009): Handbook of hybrid systems control: theory, tools, applications, Cambridge University Press.10.1017/CBO9780511807930Search in Google Scholar

23. Martello, S. (1979): “An algorithm for finding a minimal equivalent graph of a strongly connected digraph,” Computing, 21, 183–194.10.1007/BF02253052Search in Google Scholar

24. Mehlhorn, K. and P. Sanders (2008): Algorithms and data structures: The basic toolbox, Springer Science & Business Media.Search in Google Scholar

25. Rothfuss, R., J. Rudolph and M. Zeitz (1996): “Flatness based control of a nonlinear chemical reactor model,” Automatica, 32, 1433–1439.10.1016/0005-1098(96)00090-8Search in Google Scholar

26. Rothfuß, R., J. Rudolph and M. Zeitz (1997): “Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme,” at-Automatisierungstechnik, 45, 517–525.10.1524/auto.1997.45.11.517Search in Google Scholar

27. Rudolph, J. (1995): “Well-formed dynamics under quasi-static state feedback,” Banach Center Publications, 32, 349–360.10.4064/-32-1-349-360Search in Google Scholar

28. Rudolph, J., J. Birk and M. Zeitz (1991): “Dependence on time derivatives of the input in the nonlinear controller canonical form,” in New Trends in Systems Theory, Springer, 636–643.10.1007/978-1-4612-0439-8_80Search in Google Scholar

29. Rudolph, J. and M. Zeitz (1994): “A block triangular nonlinear observer normal form,” Systems & Control Letters, 23, 1–8.10.1016/0167-6911(94)90075-2Search in Google Scholar

30. Schaffner, J. and M. Zeitz (1999a): “Decentral nonlinear observer design using a block-triangular form,” International Journal of Systems Science, 30, 1131–1142.10.1080/002077299291750Search in Google Scholar

31. Schaffner, J. and M. Zeitz (1999b): “Variants of nonlinear normal form observer design,” in New Directions in nonlinear observer design, Springer, 161–180.10.1007/BFb0109926Search in Google Scholar

32. Sira-Ramirez, H. and S. K. Agrawal (2004): Differentially flat systems, Marcel Decker Inc., New York – Basel.10.1201/9781482276640Search in Google Scholar

33. Sontag, E. D. (2013): Mathematical control theory: deterministic finite dimensional systems, volume 6, Springer Science & Business Media.Search in Google Scholar

34. Wagner, D. and T. Willhalm (2003): “Geometric speed-up techniques for finding shortest paths in large sparse graphs,” in European Symposium on Algorithms Proceedings, LNCS 2832, Springer, 776–787.10.1007/978-3-540-39658-1_69Search in Google Scholar

35. Waldherr, S. and M. Zeitz (2008a): “Conditions for the existence of a flat input,” International Journal of Control, 81, 439–443.10.1080/00207170701561443Search in Google Scholar

36. Waldherr, S. and M. Zeitz (2010): “Flat inputs in the MIMO case,” in Proc. of the IFAC Nonlinear Control Systems Design, NOLCOS10, Milano, Italy, 695–700.Search in Google Scholar

37. Zahn, F., T. Kleinert and V. Hagenmeyer (2020): “On optimal control of flat hybrid automata,” in accepted for IFAC World Congress 2020.10.1016/j.ifacol.2020.12.332Search in Google Scholar

38. Zeitz, M. (1987): “The extended Luenberger observer for nonlinear systems,” Systems & Control Letters, 9, 149–156.10.1016/0167-6911(87)90021-1Search in Google Scholar

39. Zeitz, M. (1990): “Canonical forms for nonlinear systems,” in Nonlinear Control Systems Design 1989, Elsevier, 33–38.10.1016/B978-0-08-037022-4.50012-0Search in Google Scholar

40. Zeitz, M. (2010): “Differenzielle Flachheit: Eine nützliche Methodik auch für lineare SISO-Systeme (Differential flatness: A useful method also for linear SISO systems),” at-Automatisierungstechnik, 58, 5–13.10.1524/auto.2010.0815Search in Google Scholar

Received: 2020-04-20
Accepted: 2020-05-27
Published Online: 2020-07-03
Published in Print: 2020-07-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0061/html
Scroll to top button