Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 13, 2022

Optimized operation of large scale battery systems

Classical approaches, mathematical optimization and neural networks

Optimierung des Betriebs von Großbatteriesystemen
Klassische Ansätze, mathematische Optimierung und neuronale Netze
  • Daniel Lehmann

    Daniel Lehmann obtained a degree from the Ruhr-Universität Bochum, Germany, in Electrical and Information Engineering and a PhD in 2011 from the Institute of Automation and Computer Control at the same university. After spending one year as a postdoctoral researcher with the Institute of Automatic Control at the Royal Institute of Technology (KTH), Sweden, he has been working with STEAG Energy Services GmbH since 2012, where he joined the Advanced Process Control team. Since 2019, Daniel Lehmann is the head of the department electrical engineering and automation.

    EMAIL logo
    , Diego Hidalgo Rodriguez

    Diego Hidalgo Rodríguez pursued undergraduate studies in Mechatronic Engineering at San Buenaventura University in Bogota-Colombia. In 2011 he received his M. Sc. degree in process automation from the TU Dortmund University. From September 2011 until June 2015 he was with the Fraunhofer IWES in Kassel, Germany. From July 2015 until January 2019 he worked in the institute of energy systems, energy efficiency and energy economics (ie3) at the TU Dortmund University as a research associate. He is now in the department electrical engineering and automation within STEAG Energy Services.

    and Michel Brack

    Michel Brack graduated with a master’s degree in electrical engineering and information technology with a focus on “electrical power engineering” from the Technical University of Dortmund in 2020. During his time as a student, he worked part-time at Steag Energy Services and wrote his final thesis in collaboration with Steag. Since 2021, Michel Brack has been working in the department electrical engineering and automation within STEAG Energy Services.

Abstract

In the decentralized renewable driven electric energy system, economically viable battery systems become increasingly important for providing grid-related services. End of 2016, STEAG has successfully started the commercial operation of six 15 MW large scale battery systems which have been incorporated in STEAG’s primary control pool. During the commissioning phase, extensive effort has been spent in optimizing the operational efficiency of these systems with promising results. However, the operation experience has shown that there is still significant potential for improving the system behavior as well as reducing the aging of the battery cells. By analyzing historical data of the charging power associated with the state of charge management, opportunities for significantly reducing the operational costs have been identified. By means of more involved model-based control strategies, which adequately consider the specific characteristics of the battery system, and by using mathematical optimization and artificial intelligence, adapting the state of charge management strategy to new applications, these additional cost savings can be obtained. Apart from giving insights into the operational experience with large scale battery systems, the contribution of this paper lies in proposing strategies for reducing the operational costs of the battery system using classical approaches as well as mathematical optimization and neural networks. These approaches will be illustrated by simulation results.

Zusammenfassung

In der zunehmend dezentralen und auf erneuerbaren Energien beruhenden Energieversorgung werden wirtschaftliche Batteriesysteme für die Bereitstellung netzbezogener Dienstleistungen immer wichtiger. Seit Ende 2016 betreibt STEAG sechs 15-MW-Großbatteriesysteme für die Bereitstellung von Primärregelleistung. In der Inbetriebnahmephase wurden umfassende Maßnahmen umgesetzt, um die Betriebseffizienz dieser Systeme zu verbessern. Die Betriebserfahrung hat jedoch gezeigt, dass es noch erhebliches Potenzial zur Verbesserung des Systemverhaltens sowie zur Reduzierung der Alterung der Batteriezellen gibt. Durch die Analyse historischer Betriebsdaten konnten Maßnahmen zur deutlichen Reduzierung der Betriebskosten identifiziert werden. Neben Einblicken in die Betriebserfahrung mit den Großbatteriesystemen liegt der Fokus dieses Beitrags auf der Vorstellung dieser Maßnahmen. Diese umfassen klassische modellbasierte Regelungsstrategien, die spezifische Eigenschaften des Batteriesystems geeignet berücksichtigen, sowie den Einsatz von mathematischer Optimierung und künstlicher Intelligenz. Die Ansätze werden durch Simulationsergebnisse veranschaulicht.

About the authors

Daniel Lehmann

Daniel Lehmann obtained a degree from the Ruhr-Universität Bochum, Germany, in Electrical and Information Engineering and a PhD in 2011 from the Institute of Automation and Computer Control at the same university. After spending one year as a postdoctoral researcher with the Institute of Automatic Control at the Royal Institute of Technology (KTH), Sweden, he has been working with STEAG Energy Services GmbH since 2012, where he joined the Advanced Process Control team. Since 2019, Daniel Lehmann is the head of the department electrical engineering and automation.

Diego Hidalgo Rodriguez

Diego Hidalgo Rodríguez pursued undergraduate studies in Mechatronic Engineering at San Buenaventura University in Bogota-Colombia. In 2011 he received his M. Sc. degree in process automation from the TU Dortmund University. From September 2011 until June 2015 he was with the Fraunhofer IWES in Kassel, Germany. From July 2015 until January 2019 he worked in the institute of energy systems, energy efficiency and energy economics (ie3) at the TU Dortmund University as a research associate. He is now in the department electrical engineering and automation within STEAG Energy Services.

Michel Brack

Michel Brack graduated with a master’s degree in electrical engineering and information technology with a focus on “electrical power engineering” from the Technical University of Dortmund in 2020. During his time as a student, he worked part-time at Steag Energy Services and wrote his final thesis in collaboration with Steag. Since 2021, Michel Brack has been working in the department electrical engineering and automation within STEAG Energy Services.

References

1. Brack, M. 2017. Optimierung eines Großbatteriesystems im Rahmen der Erbringung von Primärregelleistung. TU Dortmund, Dortmund.Search in Google Scholar

2. Englberger, S., A. Jossen and H. Hesse. 2020. Unlocking the potentail of battery storage with the dynamic stacking of multiple applications. Cell reports physical science.10.1016/j.xcrp.2020.100238Search in Google Scholar

3. EPEXSPOT. Verfügbar ab: https://www.epexspot.com/de/produkte/intradaycontinuous/intraday_vorlaufzeit.Search in Google Scholar

4. German TSOs. 2014. Eckpunkte und Freiheitsgrade bei Erbringung von Primärregelleistung. Verfügbar ab: https://www.regelleistung.net/ext/download/eckpunktePRL.Search in Google Scholar

5. German TSOs. 2015. Anforderungen an die Speicherkapazität bei Batterien für die Primärregelleistung. Verfügbar ab: https://www.regelleistung.net/ext/download/anforderungBatterien.Search in Google Scholar

6. German TSOs. 2020. Präqualifikationsverfahren für Regelreserveanbieter (FCR, aFRR, mFRR) in Deutschland. Verfügbar ab: https://www.regelleistung.net/ext/static/prequalification.Search in Google Scholar

7. Hart, W. E., C. Laird, J.-P. Watson and D. L. Woodruff. 2012. Pyomo – Optimization Modeling in Python. Springer, Boston, MA, US.10.1007/978-1-4614-3226-5Search in Google Scholar

8. Hesse, H., V. Kumtepeli, M. Schimpe, J. Reniers, D. Howey, A. Tripathi Y. Wang and A. Jossen. 2019. Ageing and efficiency aware battery dispatch for arbitrage markets using mixed integer linear programming. energies 12: 999.10.3390/en12060999Search in Google Scholar

9. Hidalgo-Rodríguez, D. I. and J. Myrzik. 2018. Optimal operation of interconnected home-microgrids with flexible thermal loads: a comparison of decentralized, centralized, and hierarchical-distributed model predictive control. In: 20th Power Systems Computation Conference (PSCC). IEEE, Dublin, Ireland, pp. 1–7.10.23919/PSCC.2018.8442807Search in Google Scholar

10. Hidalgo-Rodríguez, D. I., D. Lehmann, M. Schmoltzi and M. Brack. 2020. Betriebserfahrung und Optimierung von Großbatteriesystemen: Eine Simulationsstudie zur Optimierung des SoC-Managements. In: KELI – Konferenz zur Elektro-, Leit- und Informationstechnik.Search in Google Scholar

11. Lehmann, D., M. Mühl and P. Deeskow. 2018. Optimized Operation of Large Scale Battery Systems – Experiences, New Opportunities and Big Data. In: Electrify Europe Conference, Wien, Austria.Search in Google Scholar

12. Lunze, J. 2016. Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen. Springer Verlag, Heidelberg Berlin.10.1007/978-3-662-52678-1Search in Google Scholar

13. Namor, E., F. Sossan, R. Cherkaoui and M. Paolone. 2019. Control of battery storage systems for the simultaneous provision of multiple services. IEEE Transactions on smart grid 10: 2799–2808.10.1109/TSG.2018.2810781Search in Google Scholar

14. Resch, K. 2018. Speicherlösungen erobern den Markt für Primärregelleistung. ew Maganzin für Energiewirtschaft.Search in Google Scholar

15. Xu, B., Y. Shi, D. Kirschen and B. Zhang. 2018. Optimal battery participation in frequency regulation markets. IEEE Transactions on power systems 33: 6715–6725.10.1109/TPWRS.2018.2846774Search in Google Scholar

16. Xu, B., J. Zhao, T. Zheng, E. Litvinov and D. Kirschen. 2018. Factoring the cycle aging cost of batteries participating in electricity markets. IEEE Transactions on power systems 33: 2248–2259.10.1109/PESGM.2018.8586232Search in Google Scholar

Received: 2021-08-13
Accepted: 2021-11-30
Published Online: 2022-01-13
Published in Print: 2022-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0114/html
Scroll to top button