Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 31, 2021

Positronium as a biomarker of hypoxia

  • Paweł Moskal ORCID logo EMAIL logo and Ewa Ł. Stępień ORCID logo

Abstract

In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.


Corresponding author: Paweł Moskal, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland; and Theranostics Center, Jagiellonian University, Kraków, Poland, E-mail:

Funding source: Foundation for Polish Science

Award Identifier / Grant number: TEAM POIR.04.04.00-00-4204/17

Funding source: National Science Centre of Poland

Award Identifier / Grant number: 2019/33/B/NZ3/01004

Funding source: Jagiellonian University

Award Identifier / Grant number: CRP/0641.221.2020

Acknowledgments

We thank H. Karimi, Sz. Parzych, D. Kumar and Dr. E. Kubicz for help with preparation of figures.

  1. Research funding: We acknowledge support by the Foundation for Polish Science through the TEAM POIR.04.04.00-00-4204/17 program and the National Science Centre of Poland through grant no. 2019/33/B/NZ3/01004 and the Jagiellonian University via project CRP/0641.221.2020.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Informed consent was obtained from all individuals included in this study.

  5. Ethical approval: The local Institutional Review Board deemed the study exempt from review.

References

1. Moskal, P. Positronium imaging. In: 2019 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE Xplore, Manchester, UK; 2020.10.1109/NSS/MIC42101.2019.9059856Search in Google Scholar

2. Moskal, P, Dulski, K, Chug, N, Curceanu, C, Czerwiński, E, Dadgar, M, et al.. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394. https://doi.org/10.1126/sciadv.abh4394.Search in Google Scholar

3. Shibuya, K, Saito, H, Nishikido, F, Takahashi, M, Yamaya, T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun Phys 2020;3:1–8. https://doi.org/10.1038/s42005-020-00440-z.Search in Google Scholar

4. Stepanov, P, Selim, F, Stepanov, S, Bokov, A, Ilyukhina, O, Duplâtre, G, et al.. Interaction of positronium with dissolved oxygen in liquids. Phys Chem Chem Phys 2020;22:5123–31. https://doi.org/10.1039/c9cp06105c.Search in Google Scholar

5. Brahimi-Horn, CM, Chiche, J, Pouyssegur, J. Hypoxia and cancer. J Mol Med 2007;85:1301–7. https://doi.org/10.1007/s00109-007-0281-3.Search in Google Scholar

6. Krolicki, L, Kunikowska, D. Theranostics – present and future. Bio Algorithm Med Syst 2021;17:213–20. https://doi.org/10.1515/bams-2021-0169.Search in Google Scholar

7. Vaupel, P, Flood, AB, Harold, Swartz HM. Oxygenation status of malignant tumors vs. normal tissues: critical evaluation and updated data source based on direct measurements with pO2. Appl Magn Reason 2021;52:1451–79. https://doi.org/10.1007/s00723-021-01383-6.Search in Google Scholar

8. McKeown, SR. Defining normoxia, physoxia and hypoxia in tumours - implications for treatment response. Br J Radiol 2014;87:20130676. https://doi.org/10.1259/bjr.20130676.Search in Google Scholar

9. Swartz, HM, Flood, AB, Schaner, PE, Halpern, H, Williams, BB, Pogue, BW, et al.. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Phys Rep 2020;8:e14541. https://doi.org/10.14814/phy2.14541.Search in Google Scholar

10. Becker, A, Hansgen, G, Bloching, M, Weigel, C, Lautenschlager, C, Dunst, J. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 1998;42:35. https://doi.org/10.1016/s0360-3016(98)00182-5.Search in Google Scholar

11. Nordsmark, M, Bentzen, SM, Overgaard, J. Measurement of human tumour oxygenation status by a polarographic needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol 1994;33:383–9. https://doi.org/10.3109/02841869409098433.Search in Google Scholar

12. Lartigau, E, Randrianarivelo, H, Avril, MF, Margulis, A, Spatz, A, Eschwege, F, et al.. Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 1997;7:400–6. https://doi.org/10.1097/00008390-199710000-00006.Search in Google Scholar

13. Lawrentschuk, N, Poon, AM, Foo, SS, Putra, LG, Murone, C, Davis, ID, et al.. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 2005;96:540–6. https://doi.org/10.1111/j.1464-410x.2005.05681.x.Search in Google Scholar

14. Nakano, T, Suzuki, Y, Ohno, T, Kato, S, Suzuki, M, Morita, S, et al.. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res 2006;12:2185–90. https://doi.org/10.1158/1078-0432.ccr-05-1907.Search in Google Scholar

15. Friedrich, MG, Karamitsos, TD. Oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reason 2013;15:43. https://doi.org/10.1186/1532-429x-15-43.Search in Google Scholar

16. Moskal, P, Kisielewska, D, Curceanu, C, Czerwiński, E, Dulski, K, Gajos, A, et al.. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017. https://doi.org/10.1088/1361-6560/aafe20.Search in Google Scholar

17. Moskal, P, Kisielewska, D, Shopa, RY, Bura, Z, Chhokar, J, Curceanu, C, et al.. Performance assessment of the 2γ positronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:1–16. https://doi.org/10.1186/s40658-020-00307-w.Search in Google Scholar

18. Moskal, P, Gajos, A, Mohammed, M, Chhokar, J, Chug, N, Curceanu, C, et al.. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12:5658. https://doi.org/10.1038/s41467-021-25905-9.Search in Google Scholar

19. Stepanov, SV, Byakova, VM, Stepanov, PS. Positronium in biosystems and medicine: a new approach to tumor diagnostics based on correlation between oxygenation of tissues and lifetime of the positronium atom. Phys Wave Phenom 2021;29:174. https://doi.org/10.3103/s1541308x21020138.Search in Google Scholar

20. Badawi, RD, Shi, H, Hu, P, Chen, S, Xu, T, Price, PM, et al.. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299. https://doi.org/10.2967/jnumed.119.226498.Search in Google Scholar

21. Karp, JS, Viswanath, V, Geagan, MJ, Muehllehner, G, Pantel, AR, Parma, MJ, et al.. PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020;61:136–43. https://doi.org/10.2967/jnumed.119.229997.Search in Google Scholar

22. Moskal, P, Stępień, E. Prospects and clinical perspectives of total body PET imaging using plastic scintillators. Pet Clin 2020;15:439–52. https://doi.org/10.1016/j.cpet.2020.06.009.Search in Google Scholar

23. Bass, SD. QED and fundamental symmetries in positronium decays. Acta Phys Pol B 2019;50:1319. https://doi.org/10.5506/aphyspolb.50.1319.Search in Google Scholar

24. Moskal, P, Jasińska, B, Stępień, EŁ, Bass, SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527–9. https://doi.org/10.1038/s42254-019-0078-7.Search in Google Scholar

25. Matulewicz, T. Radionuclide candidates for theranostics: an overview. Bio Algorithm Med Syst 2021;17. https://doi.org/10.1515/bams-2021-0142.Search in Google Scholar

26. Thirolf, PG, Lang, C, Parodi, K. Perspectives for highly-sensitive PET-based medical imaging using β+γ coincidences. Acta Phys Pol, A 2015;127:1441–4. https://doi.org/10.12693/aphyspola.127.1441.Search in Google Scholar

27. Byakov, VM, Stepanov, SV. Common features in the formation of Ps, Mu, radiolytic hydrogen and solvated electrons in aqueous solutions. J Radioanal Nucl Chem 1996;210:371–405. https://doi.org/10.1007/bf02056379.Search in Google Scholar

28. Stepanov, SV, Byakov, VM. Electric field effect on positronium formation in liquids. J Chem Phys 2002;116:6178–95. https://doi.org/10.1063/1.1451244.Search in Google Scholar

29. Goworek, T. Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann Univ Mariae Curie-Sklodowska 2014;69:1–110. https://doi.org/10.2478/umcschem-2013-0012.Search in Google Scholar

30. Stepanov, SV, Zvezhinskiy, DS, Byakov, VM, Duplatre, G, Stepanov, PS. Positrons and positronium atoms in a condensed phase close to its melting point. Acta Phys Pol, A 2014;125:691–5. https://doi.org/10.12693/aphyspola.125.691.Search in Google Scholar

31. Kataoka, Y, Asai, S, Kobayashi, T. First test of O(α2) correction of the orthopositronium decay rate. Phys Lett B 2009;671:219–23. https://doi.org/10.1016/j.physletb.2008.12.008.Search in Google Scholar

32. Al-Ramadhan, AH, Gidley, DW. New precision measurement of the decay rate of singlet positronium. Phys Rev Lett 1994;72:1632–5. https://doi.org/10.1103/physrevlett.72.1632.Search in Google Scholar

33. Garwin, RL. Thermalization of positrons in metals. Phys Rev 1953;91:1571. https://doi.org/10.1103/physrev.91.1571.Search in Google Scholar

34. Tao, SJ. Positronium annihilation in molecular substances. J Chem Phys 1972;56:5499. https://doi.org/10.1063/1.1677067.Search in Google Scholar

35. Eldrup, MM, Lightbody, D, Sherwood, JN. The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 1981;63:51–8. https://doi.org/10.1016/0301-0104(81)80307-2.Search in Google Scholar

36. Kotera, K, Saito, T, Yamanaka, T. Measurement of positron lifetime to probe the mixed molecular states of liquid water. Phys Lett A 2005;345:184–90. https://doi.org/10.1016/j.physleta.2005.07.018.Search in Google Scholar

37. Sane, P, Salonen, E, Falck, E, Repakova, J, Tuomisto, F, Holopainen, JM, et al.. Probing biomembranes with positrons. J Phys Chem B 2009;113:1810–2. https://doi.org/10.1021/jp809308j.Search in Google Scholar

38. Axpe, E, Garcia-Arribas, AB, Mujika, JI, Merida, D, Alonso, A, Lopez, X, et al.. Ceramide increases free volume voids in DPPC Membranes. RSC Adv 2015;5:44282–90. https://doi.org/10.1039/C5RA05142H.Search in Google Scholar

39. Dull, TL, Frieze, WE, Gidley, DW, Sun, JN, Yee, AF. Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium. J Phys Chem B 2001;105:4657–62. https://doi.org/10.1021/jp004182v.Search in Google Scholar

40. Moskal, P, Salabura, P, Silarski, M, Smyrski, M, Zdebik, J, Zieliński, M. Novel detector systems for the positron emission tomography. Bio Algorithm Med Syst 2011;7:73.Search in Google Scholar

41. Moskal, P, Kowalski, P, Shopa, RY, Raczyński, L, Baran, J, Chug, N, et al.. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015. https://doi.org/10.1088/1361-6560/ac16bd.Search in Google Scholar

42. Moskal, P, Bednarski, T, Niedźwiecki, SZ, Silarski, M, Czerwiński, E, Kozik, T, et al.. Synchronisation and calibration of the 24-modules J-PET prototype with 300 mm axial field of view. IEEE Trans Instrum Meas 2021;70:2000810.10.1109/TIM.2020.3018515Search in Google Scholar

43. Niedźwiecki, S, Białas, P, Curceanu, C, Czerwiński, E, Dulski, K, Gajos, A, et al.. J-PET: a new technology for the whole-body PET imaging. Acta Phys Pol B 2017;48:1567–76.10.5506/APhysPolB.48.1567Search in Google Scholar

44. Moskal, P, Rundel, O, Alfs, D, Bednarski, T, Białas, P, Czerwiński, E, et al.. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol 2016;61:2025–47. https://doi.org/10.1088/0031-9155/61/5/2025.Search in Google Scholar

45. Moskal, P, Zoń, N, Bednarski, T, Białas, P, Czerwiński, E, Gajos, A, et al.. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl Instrum Methods A 2015;775:54–62. https://doi.org/10.1016/j.nima.2014.12.005.Search in Google Scholar

46. Moskal, P, Niedźwiecki, SZ, Bednarski, T, Czerwiński, E, Kapłon, Ł, Kubicz, E, et al.. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods A 2014;764:317–21.10.1016/j.nima.2014.07.052Search in Google Scholar

47. Rahbar, K, Afshar-Oromieh, A, Jadvar, H, Ahmadzadehfar, H. PSMA theranostics: current status and future directions. Mol Imag 2018;17:1536012118776068. https://doi.org/10.1177/1536012118776068.Search in Google Scholar

48. Kubicz, E, Stępień, E, Grudzień, G, Dulski, K, Leszczyński, B, Moskal, P. Positronium life-time as a new approach for cardiac masses imaging. Eur Heart J 2021;42(1 Suppl):ehab724.3279. https://doi.org/10.1093/eurheartj/ehab724.3279.Search in Google Scholar

49. Moskal, P, Kubicz, E, Grudzień, G, Czerwiński, E, Dulski, K, Leszczyński, B, et al.. Developing a novel positronium biomarker for cardiac myxoma imaging. bioRxiv 2021:455285. https://doi.org/10.1101/2021.08.05.455285.Search in Google Scholar

50. Zgardzińska, B, Chołubek, G, Jarosz, B, Wysogląd, K, Gorgol, M, Goździuk, M, et al.. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Sci Rep 2020;10:11890. https://doi.org/10.1038/s41598-020-68727-3.Search in Google Scholar

51. Chen, HM, van Horn, JD, Jean, YC. Applications of positron annihilation spectroscopy to life science. Defect Diffusion Forum 2012;331:275–93. https://doi.org/10.4028/www.scientific.net/ddf.331.275.Search in Google Scholar

52. Jasińska, B, Zgardzińska, B, Chołubek, G, Pietrow, M, Gorgol, M, Wiktor, K, et al.. Human tissue investigations using PALS technique - free radicals influence. Acta Phys Pol, A 2017;132:1556–8.10.12693/APhysPolA.132.1556Search in Google Scholar

53. Kilburn, D, Townrow, S, Meunier, V, Richardson, R, Alam, A, Ubbink, J. Organization and mobility of water in amorphous and crystalline trehalose. Nat Mater 2006;5:632–5. https://doi.org/10.1038/nmat1681.Search in Google Scholar

54. Jean, YC, Li, Y, Liu, G, Chen, H, Zhang, J, Gadzia, JE. Applications of slow positrons to cancer research: search for selectivity of positron annihilation to skin cancer. Appl Surf Sci 2006;252:3166–71. https://doi.org/10.1016/j.apsusc.2005.08.101.Search in Google Scholar

55. Axpe, E, Lopez-Euba, T, Castellanos-Rubio, A, Merida, D, Garcia, JA, Plaza-Izurieta, L, et al.. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy. PLoS One 2014;9:e83838. https://doi.org/10.1371/journal.pone.0083838.Search in Google Scholar

56. Pałka, M, Strzempek, P, Korcyl, G, Bednarski, T, Niedźwiecki, SZ, Białas, P, et al.. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J Instrum 2017;12:P08001.10.1088/1748-0221/12/08/P08001Search in Google Scholar

57. Korcyl, G, Białas, P, Curceanu, C, Czerwiński, E, Dulski, K, Flak, B, et al.. Evaluation of single-chip, real-time tomographic data processing on FPGA SoC devices. IEEE Trans Med Imag 2018;37:2526–35. https://doi.org/10.1109/tmi.2018.2837741.Search in Google Scholar

58. Kacperski, K, Spyrou, NM. Performance of three-photon PET imaging: Monte Carlo simulations. Phys Med Biol 2005;50:5679. https://doi.org/10.1088/0031-9155/50/23/019.Search in Google Scholar

59. Mercurio, K, Zerkel, P, Laforest, R, Sobotka, LG, Charity, RJ. The three-photon yield from e+ annihilation in various fluids. Phys Med Biol 2006;51:N323–9. https://doi.org/10.1088/0031-9155/51/17/N05.Search in Google Scholar

60. Vandenberghe, S, Moskal, P, Karp, JS. State of the art in total body PET. EJNMMI Phys 2020;7:35. https://doi.org/10.1186/s40658-020-00290-2.Search in Google Scholar

Received: 2021-11-25
Accepted: 2021-12-17
Published Online: 2021-12-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/bams-2021-0189/html
Scroll to top button