Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 8, 2017

On Finite Element Formulations for the Obstacle Problem – Mixed and Stabilised Methods

  • Tom Gustafsson , Rolf Stenberg EMAIL logo and Juha Videman

Abstract

We discuss the differences between the penalty, mixed and stabilised methods for the finite element approximation of the obstacle problem. The theoretical properties of the methods are discussed and illustrated through numerical examples.

MSC 2010: 65K15; 65N30

Funding source: Tekes

Award Identifier / Grant number: 3305/31/2015

Funding statement: Funding from Tekes – the Finnish Funding Agency for Innovation (Decision No. 3305/31/2015) and the Finnish Cultural Foundation is gratefully acknowledged.

References

[1] I. Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/71), 322–333. 10.1007/BF02165003Search in Google Scholar

[2] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), 179–192. 10.1007/BF01436561Search in Google Scholar

[3] H. J. C. Barbosa and T. J. R. Hughes, The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuška–Brezzi condition, Comput. Methods Appl. Mech. Engrg. 85 (1991), 109–128. 10.1016/0045-7825(91)90125-PSearch in Google Scholar

[4] R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids, M2AN Math. Model. Numer. Anal. 37 (2003), 209–225. 10.1051/m2an:2003023Search in Google Scholar

[5] D. Braess, Finite Elements, 3rd ed., Cambridge University Press, Cambridge, 2007. 10.1017/CBO9780511618635Search in Google Scholar

[6] D. Braess, C. Carstensen and R. H. W. Hoppe, Error reduction in adaptive finite element approximations of elliptic obstacle problems, J. Comput. Math. 27 (2009), 148–169. Search in Google Scholar

[7] H. Brezis, Nouveaux théorèmes de régularité pour les problèmes unilatéraux, Les Rencontres Physiciens-Mathématiciens de Strasbourg – RCP 25, Université Louis Pasteur, Strasbourg (1971), 1–14. Search in Google Scholar

[8] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Rech. Opér. Sér. Rouge 8 (1974), 129–151. 10.1051/m2an/197408R201291Search in Google Scholar

[9] F. Brezzi, W. W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. II: Mixed methods, Numer. Math. 31 (1978/79), 1–16. 10.1007/BF01396010Search in Google Scholar

[10] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, Efficient Solutions of Elliptic Systems (Kiel 1984), Notes Numer. Fluid Mech. 10, Friedr. Vieweg, Braunschweig (1984), 11–19. 10.1007/978-3-663-14169-3_2Search in Google Scholar

[11] E. Burman, P. Hansbo, M. G. Larson and R. Stenberg, Galerkin least squares finite element method for the obstacle problem, Comput. Methods Appl. Mech. Engrg. 313 (2016), 362–374. 10.1016/j.cma.2016.09.025Search in Google Scholar

[12] F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems: Numerical analysis, SIAM J. Numer. Anal. 51 (2013), 1295–1307. 10.1137/12088344XSearch in Google Scholar

[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies Math. Appl. 4, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Search in Google Scholar

[14] R. S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comp. 28 (1974), 963–971. 10.1090/S0025-5718-1974-0391502-8Search in Google Scholar

[15] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Sci. Comput., Springer, Berlin, 2008. Search in Google Scholar

[16] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Stud. Appl. Math. 9, Society for Industrial and Applied Mathematics, Philadelphia, 1989. 10.1137/1.9781611970838Search in Google Scholar

[17] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), 2169–2189. 10.1090/S0025-5718-10-02360-4Search in Google Scholar

[18] T. Gustafsson, R. Stenberg and J. Videman, Mixed and stabilized finite element methods for the obstacle problem, SIAM J. Numer. Anal., to appear. 10.1137/16M1065422Search in Google Scholar

[19] P. Hild and Y. Renard, A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, Numer. Math. 115 (2010), 101–129. 10.1007/s00211-009-0273-zSearch in Google Scholar

[20] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as semismooth newton method, SIAM J. Optim. 13 (2003), 865–888. 10.1137/S1052623401383558Search in Google Scholar

[21] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek, Solution of Variational Inequalities in Mechanics, Appl. Math. Sci. 66, Springer, New York, 1988. 10.1007/978-1-4612-1048-1Search in Google Scholar

[22] T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg. 59 (1986), 85–99. 10.1016/0045-7825(86)90025-3Search in Google Scholar

[23] C. Johnson, Adaptive finite element methods for the obstacle problem, Math. Models Methods Appl. Sci. 2 (1992), 483–487. 10.1142/S0218202592000284Search in Google Scholar

[24] M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions, Math. Comp. 78 (2009), 1353–1374. 10.1090/S0025-5718-08-02183-2Search in Google Scholar

[25] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. Search in Google Scholar

[26] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. 10.1002/cpa.3160200302Search in Google Scholar

[27] N. Lüthen, M. Juntunen and R. Stenberg, An improved a priori error analysis of Nitsche’s method for Robin boundary conditions, preprint (2015), https://arxiv.org/abs/1502.06515. 10.1007/s00211-017-0927-1Search in Google Scholar

[28] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15. 10.1007/BF02995904Search in Google Scholar

[29] R. Nochetto, K. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), 163–195. 10.1007/s00211-002-0411-3Search in Google Scholar

[30] R. Pierre, Simple C0 approximations for the computation of incompressible flows, Comput. Methods Appl. Mech. Engrg. 68 (1988), 205–227. 10.1016/0045-7825(88)90116-8Search in Google Scholar

[31] J. Pitkäranta, Analysis of some low-order finite element schemes for Mindlin–Reissner and Kirchhoff plates, Numer. Math. 53 (1988), 237–254. 10.1007/BF01395887Search in Google Scholar

[32] R. Scholz, Numerical solution of the obstacle problem by the penalty method, Computing 32 (1984), 297–306. 10.1007/BF02243774Search in Google Scholar

[33] R. Stenberg, Mortaring by a method of J. A. Nitsche, Computational Mechanics. New Trends and Applications, CIMNE, Barcelona (1988), 1–6. Search in Google Scholar

[34] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math. 63 (1995), 139–148. 10.1016/0377-0427(95)00057-7Search in Google Scholar

[35] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Ser. Optim., Society for Industrial and Applied Mathematics, Philadelphia, 2011. 10.1137/1.9781611970692Search in Google Scholar

[36] Q. Zou, A. Veeser, R. Kornhuber and C. Gräser, Hierarchical error estimates for the energy functional in obstacle problems, Numer. Math. 117 (2011), 653–677. 10.1007/s00211-011-0364-5Search in Google Scholar

Received: 2017-2-5
Accepted: 2017-5-10
Published Online: 2017-6-8
Published in Print: 2017-7-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2017-0011/html
Scroll to top button