Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2018

A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier–Stokes equations

  • Alexander Linke , Michael Neilan , Leo G. Rebholz EMAIL logo and Nicholas E. Wilson

Abstract

We prove that for several inf-sup stable mixed finite elements, the solution of the Chorin/Temam projection methods for Navier–Stokes equations equipped with grad–div stabilization with parameter γ converge to the associated coupled method solution with rate γ−1 as γ → ∞. We prove this result for both backward Euler schemes and BDF2 schemes. Furthermore, we simplify classical numerical analysis of projection methods, allowing us to remove some unnecessary assumptions, such as convexity of the domain. Several numerical experiments are given which verify the convergence rate, and show that projection methods with large grad–div stabilization parameters can dramatically improve accuracy.

MSC 2010: 65M60; 76D05

References

[1] Ph. Angot, M. Jobelin and J. Latche, Error analysis of the penalty-projection method for the time dependent Stokes equations, Int. J. Finite Vol. 6 (2009), 1–26.Search in Google Scholar

[2] D. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, In: Advances in Computer Methods for Partial Differential Equations VII (Eds. R. Vichnevetsky, D. Knight and G. Richter), IMACS, pp. 28–34, 1992.Search in Google Scholar

[3] M. Benzi, G. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica14 (2005), 1–137.10.1017/S0962492904000212Search in Google Scholar

[4] M. Benzi and M. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comp. 28 (2006), 2095–2113.10.1137/050646421Search in Google Scholar

[5] M. Braack, Outflow conditions for Navier–Stokes equations with skew-symmetric formulation of the convective term, In: Boundary and interior layers, computational and asymptotic methods (Ed. P. Knobloch), BAIL, pp. 35–46, 2015.10.1007/978-3-319-25727-3_4Search in Google Scholar

[6] D. Brown, R. Cortez and M. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comp. Phys. 168 (2001), 464–499.10.1006/jcph.2001.6715Search in Google Scholar

[7] M. Case, V. Ervin, A. Linke and L. Rebholz, A connection between Scott–Vogelius elements and grad–div stabilization, SIAM J. Numer. Anal. 49 (2011), 1461–1481.10.1137/100794250Search in Google Scholar

[8] A. J. Chorin, Numerical solution for the Navier–Stokes equations, Math. Comp. 22 (1968), 745–762.10.1090/S0025-5718-1968-0242392-2Search in Google Scholar

[9] H. Elman, D. Silvester and A. Wathen, Finite Elements and Fast Iterative Solvers with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2005.Search in Google Scholar

[10] J. Guermond, Un résultat de convergence ďordre deux en temps pour ľapproximation des équations de Navier–Stokes par une technique de projection incrémentale, Math. Modelling Numer. Anal. 33 (1999), 169–189.10.1051/m2an:1999101Search in Google Scholar

[11] J. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), 6011–6045.10.1016/j.cma.2005.10.010Search in Google Scholar

[12] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangulations, Math. Comp. 83 (2014), 15–36.10.1090/S0025-5718-2013-02753-6Search in Google Scholar

[13] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for the second order time discretization, SIAM J. Numer. Anal. 2 (1990), 353–384.10.1137/0727022Search in Google Scholar

[14] E. Jenkins, V. John, A. Linke and L. Rebholz, On the parameter choice in grad–div stabilization for the Stokes equations, Adv. Comp. Math. 40 (2014), 491–516.10.1007/s10444-013-9316-1Search in Google Scholar

[15] M. Jobelin, C. Lapuerta, J.-C. Latche, Ph. Angot and B. Piar, A finite element penalty-projection method for incompressible flows, J. Comp. Phys. 217 (2006), 502–518.10.1016/j.jcp.2006.01.019Search in Google Scholar

[16] W. Layton, An Introduction to the Numerical Analysis of Viscous Incompressible Flows, SIAM, Philadelphia, 2008.10.1137/1.9780898718904Search in Google Scholar

[17] W. Layton, C. Manica, M. Neda, M. A. Olshanskii and L. Rebholz, On the accuracy of the rotation form in simulations of the Navier–Stokes equations, J. Comp. Phys. 228 (2009), 3433–3447.10.1016/j.jcp.2009.01.027Search in Google Scholar

[18] W. Layton, C. Manica, M. Neda and L. Rebholz, Numerical analysis and computational testing of a high accuracy Leraydeconvolution model of turbulence, Numer. Meth. Partial Differ. Equ. 24 (2008), 555–582.10.1002/num.20281Search in Google Scholar

[19] H. K. Lee, M. A. Olshanskii and L. G. Rebholz, On error analysis for the 3D Navier–Stokes equations in velocity–vorticity– helicity form, SIAM J. Numer. Anal. 49 (2011), 711–732.10.1137/10080124XSearch in Google Scholar

[20] M. A. Olshanskii and A. Reusken, Grad–Div stabilization for the Stokes equations, Math. Comp. 73 (2004), 1699–1718.10.1090/S0025-5718-03-01629-6Search in Google Scholar

[21] M. A. Olshanskii and E. E. Tyrtyshnikov, Iterative Methods for Linear Systems: Theory and Applications, SIAM, Philadelphia, 2014.10.1137/1.9781611973464Search in Google Scholar

[22] J. Perot, An analysis of the fractional step method, J. Comp. Phys. 108 (1993), 51–58.10.1006/jcph.1993.1162Search in Google Scholar

[23] A. Prohl, Projection and quasi-compressibility methods for solving the incompressible Navier–Stokes equations, Teubner-Verlag, Stuttgart, 1997.10.1007/978-3-663-11171-9Search in Google Scholar

[24] A. Prohl, On pressure approximation via projection methods for nonstationary incompressible Navier–Stokes equations, SIAM J. Numer. Anal. 47 (2008), 158–180.10.1137/07069609XSearch in Google Scholar

[25] J. Schöberl, Robust Multigrid Methods for a Parameter Dependent Problem in primal variables, Numer. Alg. 84 (1999), 97–119.Search in Google Scholar

[26] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, Math. Modelling Numer. Anal. 19 (1985), 111–143.10.1051/m2an/1985190101111Search in Google Scholar

[27] J. Shen, On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations, Numer. Math. 62 (1992), 49–73.10.1007/BF01396220Search in Google Scholar

[28] R. Temam, Sur ľapproximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires, II, Arch. Rational Mech. Anal. 33 (1969), 377–385.10.1007/BF00247696Search in Google Scholar

[29] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp. 74 (2005), 543–554.10.1090/S0025-5718-04-01711-9Search in Google Scholar

Received: 2016-4-2
Revised: 2016-6-15
Accepted: 2016-7-3
Published Online: 2018-2-19
Published in Print: 2017-12-20

© 2016 by Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2016-1024/html
Scroll to top button