Skip to main content
Log in

Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

To understand fundamental defense mechanisms of an individual and to perceive organization and functioning of the human immune system, it is inevitable to sum up its phylogenic development. Lymphoid organs are crucial in regulation of physiological lymphocytes development and subsequently play a significant role in appropriate immunological responses to foreign pathogens. Throughout the evolutionary tree, the primary lymphoid organs have emerged earlier than the secondary lymphoid organs. Considering the sites for cell populations’ development responsible for adaptive immunity, B lymphocytes differentiation and maturation have considerably differed during phylogeny as well as ontogeny. On the contrary, T lymphocytes development is defined exclusively in the thymus. From the evolutionary point of view, location of primary lymphoid organs must have been sophistically pre-programmed in terms of their function. Need for thymus evolving from the foregut supports the fact of emerging diverse repertoire of antigen receptors. The thymus represents the very first lymphoid organ evolved in Vertebrata to deal with potentially autoreactive, somatically heterogeneous T lymphocyte receptors. The necessity of maintaining an immunological integrity was the most crucial stimulus for evolution. Thymus as a primary lymphoid organ constitutes an eminent structure that markedly differentiates the higher Vertebrata from the rest of the animal phyla. The present paper is meant to provide a profound evolutionary insight into the lymphoid organs with the emphasis on the thymus morphology through the phylogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamkov M., Furjelová M., Horácek J., Bencat M. & Kružliak P. 2014. Relationship of mismatch repair proteins and survivin in colon polyps and carcinomas. Acta Histochem. 116 (6): 1007–1014. DOI: 10.1016/j.acthis.2014.04.005

    Google Scholar 

  • Adamkov M., Halasova E., Rajcani J., Bencat M., Vybohova D., Rybarova S. & Galbavy S. 2011. Relation between expression pattern of p53 and survivin in cutaneous basal cell carcinomas. Med. Sci. Monit. 17 (3): BR74–80 DOI: 10.12659/MSM.881442

    Google Scholar 

  • Agius C. & Roberts R. J. 2003. Melano-macrophage centres and their role in fish pathology. J. Fish Dis. 26 (9): 499–509. DOI: 10.1046/j.1365-2761.2003.00485.x

    Article  CAS  PubMed  Google Scholar 

  • Aifantis I., Mandal M., Sawai K., Ferrando A. & Vilimas T. 2006. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol. Rev. 209 (1): 159–169. DOI: 10.1111/j.0105-2896.2006.00343.x

    Article  CAS  PubMed  Google Scholar 

  • Alitheen N.B., McClure S. & McCullagh P. 2010. B-cell development: one problem, multiple solutions. Immunol. Cell. Biol. 88 (4): 445–450. DOI: 10.1038/icb.2009.119

    Article  PubMed  Google Scholar 

  • Amemiya C.T., Saha N.R. & Zapata A. 2007. Evolution and development of immunological structures in the lamprey. Curr. Opin. Immunol. 19 (5): 535–541. DOI: 10.1016/j.coi.2007.08. 003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardavin C.F., Gomariz R.P., Barrutia M.G., Fonfriat J. & Zapata A. 1984. The lympho-hemopoietic organs of the anadromous sea lamprey, Petromyzon marinus. A comparative study throughout its life span. Acta Zool. (Stockh.) 65 (1): 1–15. DOI: 10.1111/j.1463-6395.1984.tb00805.x

    Article  Google Scholar 

  • Ardavín C.F. & Zapata A. 1987. Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lamprey Petromyzon marinus. Dev. Comp. Immunol. 11 (1): 79–93.

    Article  PubMed  Google Scholar 

  • Arstilla T.P., Vainio O. & Lassila O. 1994. Central role of CD4+ T cells in avian immune response. Poultry Sci. 73 (7): 1019–1026. DOI: 10.3382/ps.0731019

    Article  Google Scholar 

  • Austbø L., Aas I.B., König M., Weli S.C., Syed M., Falk K. & Koppang E.O. 2014 Transcriptional response of immune genes in gills and the interbranchial lymphoid tissue of Atlantic salmon challenged with infectious salmon anaemia virus. Dev. Comp. Immunol. 45 (1): 107–114. DOI: 10.1016/j.dci.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  • Aw D. & Palmer D.B. 2011. The origin and implication of thymic involution. Aging Dis. 2 (5): 437–443. PMID: 22396892

    PubMed  PubMed Central  Google Scholar 

  • Azzali G. 2003. Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol. Rev. 195 (1): 178–193. DOI: 10.1034/j.1600-065X.2003.00072.x

    Article  PubMed  Google Scholar 

  • Bai M., Doukas M., Papoudou-Bai A., Barbouti A., Stefanaki K., Galani V. & Kanavaros P. 2013. Immunohistological analysis of cell cycle and apoptosis regulators in thymus. Ann. Anat. 195 (2): 159–165. DOI: 10.1016/j.aanat.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  • Bajoghli B., Guo P., Aghaallaei N., Hirano M., Strohmeier C., McCurley N., Bockman D.E., Schorpp M., Cooper M.D. & Boehm T. 2011. A thymus candidate in lampreys. Nature 470 (7332): 90–94. DOI: 10.1038/nature09655.

    Article  CAS  PubMed  Google Scholar 

  • Balogh P. 2011. Introduction: Evolution of peripheral lymphoid organs, Chapter 1, pp. 1-3, DOI: 10.1007/978-3-642-14429-51 In: Balogh P. (ed.), Developmental Biology of Peripheral Lymphoid Organs, Springer-Verlag, Berlin, Heidelberg, 177 pp. ISBN: 978-3-642-14428-8

    Chapter  Google Scholar 

  • Balogh P. & Lábadi, A. 2011. Structural evolution of the spleen in man and mouse, Chapter 11, pp. 121–141. DOI: 10.1007/978-3-642-14429-511 In: Balogh P. (ed.), Developmental Biology of Peripheral Lymphoid Organs, Springer-Verlag, Berlin, Heidelberg, 177 pp. ISBN: 978-3-642-14428-8

    Chapter  Google Scholar 

  • Bao H.J., Li M.Y., Wang J., Qin J.H., Xu C.S., Hei N.N., Yang P., Gandahi J.A. & Chen Q.S. 2009. Architecture of the blood-spleen barrier in the soft-shelles turtle, Pelodiseus sinensis. Anat. Rec. (Hoboken) 292 (8): 1079–1087. DOI: 10.1002/ar.20917.

    Article  Google Scholar 

  • Beard J. 1894. The development and probable function of the thymus. Anat. Anz. 9: 476–486.

    Google Scholar 

  • Berens von Rautenfeld D. & Budras K.D. 1983. Topography, ultrastructure and phagocytic capacity of avian lymph nodes. Cell Tissue Res. 228 (2): 389–403. DOI: 10.1007/BF002048

    Article  CAS  PubMed  Google Scholar 

  • Biggs P.M. 1957. The association of lymphoid tissue with the lymph vessels in the domestic chicken (Gallus domesticus). Acta Anat. 29 (1-2): 36–47. DOI: 10.1159/000141159

    Article  CAS  PubMed  Google Scholar 

  • Bockman D.G. 1970. The thymus, Chapter 4, pp. 111–130. In: Gans C. & Parsons T.S. (eds), Biology of the Reptilia, Vol. 3, Part C Morphology, Academic Press, New York, 385 pp.

    Google Scholar 

  • Bockman D.E. & Cooper M.D. 1973. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix and Peyer’s patches. An electron microscopic study. Am. J. Anat. 136 (4): 455–477. DOI: 10.1002/aja.1001360406

    Article  CAS  PubMed  Google Scholar 

  • Bodey B., Bodey B.Jr., Siegel S.E. & Kaiser H.E. 2000. Novel insights into the function of the thymic Hassall’s bodies. In Vivo (Athens, Greece) 14 (3): 407–418. PMID: 10904874

    CAS  Google Scholar 

  • Boehm T. 2011. Design principles of adaptive immune system. Nat. Rev. Immunol. 11 (5): 307–317. DOI: 10.1038/nri2944.

    Article  CAS  PubMed  Google Scholar 

  • Boehm T. & Bleul C.C. 2007. The evolutionary history of lymphoid organs. Nat. Immunol. 8 (2): 131–135. DOI: 10.1038/ni1435

    Article  CAS  PubMed  Google Scholar 

  • Boehm T., Hess I. & Swann J.B. 2012a. Evolution of lymphoid tissues. Trends Immunol. 33 (6): 315–321. DOI: 10.1016/j.it.2012.02.005.

    Article  CAS  PubMed  Google Scholar 

  • Boehm T., McCurley N., Sutoh Y., Schorpp M., Kasahara M. & Cooper M.D. 2012b. VLR-based adaptive immunity. Annu. Rev. Immunol. 30: 203–220. DOI: 10.1146/annurev-immunol-020711-075038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borysenko M. 1976. Phylogeny of immunity: An overview. Immunogenetics 3 (1): 305–326. DOI: 10.1007/BF01576964

    Article  Google Scholar 

  • Borysenko M. & Cooper E.L. 1972. Lymphoid tissue in the snapping turtle, Chelydra serpentine. J. Morphol. 138 (4): 487–497. DOI: 10.1002/jmor.1051380408

    Article  CAS  PubMed  Google Scholar 

  • Bowden T.J., Cook P. & Rombout J.H. 2005. Development and function of the thymus in teleosts. Fish Shellfish Immunol. 19 (5): 413–427. DOI: 10.1016/j.fsi.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  • Brendolan A., Rosado M.M., Carsetti R., Selleri L. & Dear T.N. 2007. Development and function of the mammalian spleen. Bioessays 29 (2): 166–177. DOI: 10.1002/bies.20528

    Article  CAS  PubMed  Google Scholar 

  • Bringworth J.F. & Thorn M. 2013. Vertebrate immune system evolution and comparative primate immunity, pp. 17–64. DOI: 10.1007/978-1-4614-7181-32. In: Bringworth J.F. & Pechenkina K. (eds), Primates, Pathogens, and Evolution, Part I., series Developments in Primatology: Progress and Prospects, Springer, New York, Heidelberg, Dordrecht, London. 428 pp. ISBN: 978-1-4614-7180-6

    Chapter  Google Scholar 

  • Budras K.-D., Hullinger R.L. & Rautenfeld D.B.V. 1987. Lymph heart musculature in birds. J. Morphol. 191 (1): 77–87. DOI: 10.1002/jmor.1051910108

    Article  CAS  PubMed  Google Scholar 

  • Burne R.H. 1926. Anatomy of the ductless glands and lymphatic system of the angler fish (Lophius piscatorius). Philos. Trans. R. Soc. London 215 (421-430): 1–56. DOI: 10.1098/rstb.1927.0001

    Google Scholar 

  • Butler J.E. & Sinkora M. 2013. The enigma of the lower gutassociated lymphoid tissue (GALT). J. Leukoc. Biol. 94 (2): 259–270. DOI: 10.1189/jlb.0313120

    Article  CAS  PubMed  Google Scholar 

  • Butler J.E., Sinkora M., Wertz N., Holtmeier W. & Lemke C.D. 2006. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet. Res. 37 (3): 417–441. DOI: 10.1051/vetres:2006009

    Article  CAS  PubMed  Google Scholar 

  • Castenholz A. & Castenholz H.E. 1996. Casting methods of scanning electron microscopy applied to hemal lymph nodes in rats. Lymphology 29 (3): 95–105.

    CAS  PubMed  Google Scholar 

  • Cerutti P. & Guerrero F. 2008. Erythropoiesis and erythrophagocytosis in bovine haemal nodes. Int. J. Morphol. 26 (3): 557–562. DOI: 10.4067/S0717-95022008000300008

    Article  Google Scholar 

  • Cesta M.F. 2006. Normal structure, function and histology of the spleen. Toxicol. Pathol. 34 (5): 455–465. DOI: 10.1080/01926230600867743

    Article  PubMed  Google Scholar 

  • Chantanachookhin C., Seikai T. & Tanaka M. 1991. Comparative study of the ontogeny of the lymphoid organs in three species of marine fish. Aquaculture 99 (1–2): 143–155. DOI: 10.1016/0044-8486(91)90294-H

    Article  Google Scholar 

  • Chieffi G., Chieffi Bacari G., Di Matteo L., d’Istria M., Minucci S. & Varriale B. 1996. Cell biology of the Harderian gland. Int. Rev. Cytol. 168: 1–80. DOI: 10.1016/S0074-7696(08)60882-7

    Article  PubMed  Google Scholar 

  • Chilmonczyk K. 1992. The thymus in fish: Development and possible function in the immune response. Annu. Rev. Fish Disease 2: 181–200. DOI: 10.1016/0959-8030(92)90063-4

    Article  Google Scholar 

  • Chung C.Y., Ysebaert D., Berneman Z.N. & Cools N. 2013. Dendritic cells: cellular mediators for immunological tolerance. Clin. Dev. Immunol. 2013: 8 pp. DOI: 10.1155/2013/972865.

  • Ciriaco E., Pinera P.P., Diaz-Esnal B. & Laura R. 2003. Agerelated changes in the avian primary lymphoid organs (thymus and bursa of Fabricius). Microsc. Res. Tech. 62 (6): 482–487. DOI: 10.1002/jemt.10416

    Article  PubMed  Google Scholar 

  • Cooper E.L. 1982. General Immunology. A Wheaton & Co. Ltd., Exeter, 343 pp. ISBN: 0080263682, 9780080263687

    Google Scholar 

  • Cooper M.D. & Alder, M.N. 2006. The evolution of adaptive immune systems. Cell 124 (4): 815–822. DOI: 10.1016/j. cell.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  • Cooper E.L., Brown B.A. & Wright R.K. 1975. New ideas on amphibian immunity: the lymph gland: a generator of both T and B cells. Am. Zool. 15 (1): 85–92. DOI: 10.1093/icb/15.1.85

    Article  Google Scholar 

  • Curtis S.K., Volpe E.P. & Cowden R.R. 1972. Ultrastructure of the developing thymus of the leopard frog. Rana pipiens. Z. Zellforsch. Mikrosk. Anat. 127 (3): 323–346. DOI: 10.1007/BF00306877

    Article  CAS  PubMed  Google Scholar 

  • Dalum A.S., Austbø L., Bjørgen H., Skjødt K., Hordvik I., Hansen T., Fjelldal P.G., Press C.M., Griffiths D.J. & Koppang E.O. 2015. The interbranchial lymphoid tissue of Atlantic Salmon (Salmo salar L) extends as a diffuse mucosal lymphoid tissue throughout the trailing edge of the gill filament. J. Morphol. 276 (9): 1075–1088. DOI: 10.1002/jmor.20403

    Article  CAS  PubMed  Google Scholar 

  • Danilova N. 2006. The evolution of immune mechanisms. J. Exp. Zool. B. Mol. Dev. Evol. 306B (6): 496–520. DOI: 10.1002/jez.b.21102

    Article  CAS  Google Scholar 

  • Danilova N., Hohman V.S., Sacher F., Ota T., Willett C.E. & Steiner L.A. 2004. T cells and the thymus in developing zebrafish. Dev. Comp. Immunol. 28 (7-8): 755–767. DOI: 10.1016/j.dci.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  • Dooley J., Erickson M., Gillard G.O. & Farr A.G. 2006. Cervical thymus in the mouse. J. Immunol. 176 (11): 6484–6490. DOI: 10.4049/?jimmunol.176.11.6484

    Article  CAS  PubMed  Google Scholar 

  • Dorko F., Danko J., Flešárová S., Boroš E. & Sobeková A. 2011a. Effect of pesticide bendiocarbamate on distribution of acetylcholine-and butyrylcholine-positive nerves in rabbit’s thymus. Eur. J. Histochem. 55 (4): e37. DOI: 10.4081/ejh.2011.e37

    Google Scholar 

  • Dorko F., Horácek J., Tokarcík J. & Miko M. 2013. Cholinesterase activity in quail primary lymphoid organs. Biologia 68 (6): 1238–1242. DOI: 10.2478/s11756-013-0269-0

    Article  CAS  Google Scholar 

  • Dorko F., Kluchová D., Boleková A., Špakovská T., Borošová T. & Lovasová K. 2011b. Influence of surgical and chemical orchidectomy on weight and distribution of AChE-nerve fibers in thymuses of adult rats. Eur. J. Histochem. 55 (3): e22. DOI: 10.4081/ejh.2011.e22

    Google Scholar 

  • Du Pasquier L. 1982. Ontogeny of immunological functions in amphibians, Chapter 18, pp. 633–657. DOI: 10.1007/978-1-4684-4166-618. In: Cohen N. & Sigel M.M. (eds), Phylogeny and Ontogeny, Springer US, 757 pp. ISBN: 978-1-4684-4168-0

  • Du Pasquier L., Schwager J. & Flajnik M.F. 1989. The immune system of Xenopus. Annu. Rev. Immunol. 7: 251–275. DOI: 10.1146/annurev.iy.07.040189.001343

    Article  PubMed  Google Scholar 

  • Duellman W.E. & Trueb L. 1986. Biology of Amphibians. The Johns Hopkins University Press, Maryland, 670 pp. ISBN: 080184780X

    Google Scholar 

  • Ekman A., Pessa-Morikawa T., Liljavirta J., Niku M. & Iivanainen A. 2010. B-cell development in bovine fetuses proceeds via a pre-B like cell in bone marrow and lymph nodes. Dev. Comp. Immunol. 34 (8): 896–903. DOI: 10.1016/j.dci.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  • Elmore S. 2007. Apoptosis. A review of programmed cell death. Toxicol. Pathol. 35 (4): 495–516. DOI: 10.1080/0192623070 1320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezeasor D.N. & Singh A. 1988. Histology of the caprine hemal node. Acta Anat. 133 (1): 16–23. DOI: 10.1159/000146607

    Article  CAS  PubMed  Google Scholar 

  • Fänge R. 1977. Size relations of lymphomyeloid organs in some cartilaginous fish. Acta Zool. 58 (3): 125–128. DOI: 10.1111/j.1463-6395.1977.tb00246.x

    Article  Google Scholar 

  • Fänge R. & Mattisson A. 1981. The lymphomyeloid (hemopoietic) system of the atlantic nurse shark, Gynglymostoma cirratum. Biol. Bull. 160 (2): 240–249.

    Article  Google Scholar 

  • Fänge R. & Pulsford A. 1983. Structural studies on lymphomyeloid tissues of the dogfish, Scyliorhinus canicula L. Cell Tissue Res. 230 (2): 337–351. DOI: 10.1007/BF002138 08

    Article  PubMed  Google Scholar 

  • Fänge R. & Sundell G. 1969. Lymphomyeloid tissues, blood cells and plasma proteins in Chimaera monstrosa (Pisces, Holocephali). Acta Zool. 50 (1-2): 155–168. DOI: 10.1111/j.1463-6395.1969.tb00537.x

    Article  Google Scholar 

  • Flajnik M.F. & Du Pasquier, L. 2004. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25 (12): 640–644. DOI: 10.1016/j.it.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  • Fujii T. 1982. Electron microscopy of the leucocytes of the typhlosole in ammocoetes, with special attention to the antibody producing cells. J. Morphol. 173 (1): 87–100. DOI: 10.1002/jmor.1051730108

    Article  CAS  PubMed  Google Scholar 

  • Geenen V. 2012a. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems. Acta Clin. Belg. 67 (3): 209–213. DOI: 10.1179/ACB.67.3.2062657-

    CAS  PubMed  Google Scholar 

  • Geenen V. 2012b. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Ann. N. Y. Acad. Sci. 1261 (1): 42–48. DOI: 10.1111/j.1749-6632.2012.06624.x

    Article  CAS  PubMed  Google Scholar 

  • Glick B. 1979. The avian immune system. Avian Dis. 23 (2): 282–289. DOI: 10.2307/1589557

    Article  Google Scholar 

  • Glick B., Chang T.S. & Jaap R.G. 1956. The bursa of Fabricius and antibody production. Poultry Sci. 35 (1): 224–225. DOI: 10.3382/ps.0350224

    Article  Google Scholar 

  • Goldstine S.N., Manickavel V. & Cohen N. 1975. Phylogeny of gut-associated lymphoid tissue. Amer. Zool. 15: 107–118. DOI: 10.1093/icb/15.1.107

    Article  Google Scholar 

  • Gorgollon P. 1983. Fine structure of the thymus in the adult cling fish Sicyases sanguineus (Pisces, Gobiesocidae). J. Morphol. 177 (1): 25–40. DOI: 10.1002/jmor.1051770103

    Article  CAS  PubMed  Google Scholar 

  • Grapin-Botton A. & Constam D. 2007. Evolution of the mechanisms and molecular control of endoderm formation. Mech. Dev. 124 (4): 253–278. DOI: 10.1016/j.mod.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  • Guo P., Hirano M., Herrin B.R., Li J., Yu C., Sadlonova A. & Cooper M.D. 2009. Dual nature of the adaptive immune system in lampreys. Nature 459 (7248): 796–801. DOI: 10.1038/nature08068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadeiba H. & Butcher E.C. 2013. Thymus-homing dendritic cells in central tolerance. Eur. J. Immunol. 43 (6): 1425–1429. DOI: 10.1002/eji.201243192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halašová E., Adamkov M., Matáková T., Kavcová E., Poliacek I. & Šingliar A. 2010. Lung cancer incidence and survival in chromium exposed individuals with respect to expression of anti-apoptotic protein survivin and tumor suppresor p53 protein. Eur. J. Med. Res. 15 (Suppl. 2): 55–59. PMID: 21147621

    PubMed  PubMed Central  Google Scholar 

  • Hale L.P. & Markert M.L. 2004. Corticosteroids regulate epithelial cell differentiation and Hassall body formation in the human thymus. J. Immunol. 172 (1): 617–624. DOI: 10.4049/jimmunol.172.1.617

    Article  CAS  PubMed  Google Scholar 

  • Hansen J.D. & Zapata A.G. 1998. Lymphocyte development in fish and amphibians. Immunol. Rev. 166: 199–220. DOI: 10.1111/j.1600-065X.1998.tb01264.x

    Article  CAS  PubMed  Google Scholar 

  • Hart S., Wrathmell A.B. & Harris J.E. 1986. Ontogeny of gutassociated lymphoid tissue (GALT) in the dogfish Scyliorhinus canicula L. Vet. Immunol. Immunopathol. 12 (1-4): 107–116. DOI: 10.1016/0165-2427(86)90115-7

    Article  CAS  PubMed  Google Scholar 

  • Hedrick M.S., Hansen K., Wang T., Lauridsen H., Thygesen J. & Pedersen, M. 2014. Visualising lymph movement in anuran amphibians with computed tomography. J. Exp. Biol. 217 (17): 2990–2993 DOI: 10.1242/jeb.106906

    Article  PubMed  Google Scholar 

  • Henry M. & Charlemagne J. 1980. Development of amphibian thymus. Morphological differentiation, multiplication, migration and lysis of thymocytes in the urodele Pleurodeles waltlii. J. Embryol. Exp. Morph. 57: 219–232. PMID: 7430931

    CAS  PubMed  Google Scholar 

  • Herrin B.R. & Cooper M.D. 2010. Alternative adaptive immunity in jawless vertebrates. J. Immunol. 185 (3): 1367–1374. DOI: 10.4049/jimmunol.0903128

    Article  CAS  PubMed  Google Scholar 

  • Honma Y., Okabe K. & Chiba A. 1984. Comparative histology of the Leydig and epigonal organs in some elasmobranches. Jap. J. Ichtyol. 31 (1): 47–54.

    Google Scholar 

  • Ishizuya-Oka A., Hasebe T. & Shi Y.-B. 2010. Apoptosis in amphibian organs during metamorphosis. Apoptosis 15 (3): 350–364. DOI: 10.1007/s10495-009-0422-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonska-Mestanova V., Sisovsky V., Danisovic L., Polak S. & Varga I. 2013. The normal human newborns thymus. Bratisl. Lek. Listy 114 (7): 402–408. DOI: 10.4149/BLL 2013 086

    CAS  PubMed  Google Scholar 

  • John J.L. 1994. The avian spleen: A neglected organ. Q. Rev. Biol. 69 (3): 327–351. DOI: 10.1086/418649

    Article  CAS  PubMed  Google Scholar 

  • Johnston M.R.L. 1973. Perivascular lymphoid tissue associated with the axillary lymph sinus and lateral vein of the Gehyra variegate. J. Morphol. 139 (4): 431–438. DOI: 10.1002/jmor.1051390405

    Article  CAS  PubMed  Google Scholar 

  • Jolly J. 1913. Sur les organs lympho-epitheliaux. Comp. Rend. Hebdom. Seanc. Mem. Soc. Biol. A65, 74 (T1): 540–543.

    Google Scholar 

  • Jordan R.K. 1976. Development of sheep thymus in relation to utero thymectomy experiments. Eur. J. Immunol. 6 (10): 693–698. DOI: 10.1002/eji.1830061007

    Article  CAS  PubMed  Google Scholar 

  • Joss J.M.P. 1998. Are lungfish neotenic? Clin. Exp. Pharmacol. Physiol. 25 (9): 733–735. DOI: 10.1111/j.1440-1681.1998.tb02286.x

    Article  CAS  PubMed  Google Scholar 

  • Junt T., Scandella E. & Ludewig B. 2008. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat. Rev. Immunol. 8 (10): 764–775. DOI: 10.1038/nri2414

    Article  CAS  PubMed  Google Scholar 

  • Kachlik D., Baca V., Bozdechova I., Cech P. & Musil V. 2008. Anatomical terminology and nomenclature: past, present and highlights. Surg. Radiol. Anat. 30 (6): 459–466. DOI: 10.1007/s00276-008-0357-y

    Article  PubMed  Google Scholar 

  • Kannan T.A., Ramesh G., Ushakumary S., Dhinakarraj G. & Vairamuthu S. 2015. Thymic Hassall’s corpuscles in Nandanam chicken -light and electronmicroscopic perspective (Gallus domesticus). J. Anim. Sci. Technol. 57: 30. DOI: 10.1186/s40781-015-0064-2

  • Katagiri Ch. 1978. Xenopus laevis as a model for the study of immunology. Dev. Comp. Immunol. 2 (1): 5–13. DOI: 10.1016/S0145-305X(78)80020-2

    Article  CAS  PubMed  Google Scholar 

  • Kendall M.D. 1980. Avian thymus glands: a review. Dev. Comp. Immunol. 4: 191–209. DOI: 10.1016/S0145-305X(80)80023-1

    Article  CAS  PubMed  Google Scholar 

  • Kihara T. & Naito E. 1933. Beiträge zur Anatomie des Lymphgefässsystems der Wirbeltiere und des Menschen (Japaner). Nr. 19. Uber den Einlagerungs-und Verbreitungsmodus des lympha tischen Gewebes im Lymph-gefasssystem der Ente. Folia Anat. Jap. 11 (5): 405–413.

    Article  Google Scholar 

  • Koch G. 1991. The immune system in poultry. Tijdschr. Diergeneeskde. 116 (14): 728–734.

    CAS  Google Scholar 

  • Kondo M. 1937. Beiträge zur Anatomie des Lymphgefässsystems der Wirbeltiere und des Menschen (Japaner). Nr. 24. Die lymphatischen gebilde im lymphgefasssystem der Huhnes. Folia Anat. Jap. 15: 309–325.

    Google Scholar 

  • Konkel J.E., Jin W., Abbatiello B., Grainger J.R. & Chen W. 2014. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl. Acad. Sci. USA. 111 (4): E465–473. DOI: 10.1073/pnas.1320319111.

    Article  CAS  Google Scholar 

  • Koppang E.O., Fischer U., Moore L., Tranulis M.A., Dijkstra J.M., Köllner B., Aune L., Jirillo E. & Hordvik I. 2010. Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J. Anat. 217 (6): 728–739. DOI: 10.1111/j.1469-7580.2010.01305.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalska M., Kovalska L., Pavlikova M., Janickova M., Mikuskova M., Adamkov M., Kaplan P., Tatarkova Z. & Lehotsky J. 2012. Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem. Res. 37 (7): 1568–1577. DOI 10.1007/s11064-012-0752-y

    Article  CAS  PubMed  Google Scholar 

  • Lillehoj H.S. & Trout J.M. 1996. Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin. Microbiol. Rev. 9 (3): 349–360. PMID: 8809465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z. & Casley-Smith J.R. 1989. The fine structure of the amphibian lymph heart. Lymphology 22 (1): 25–30. PMID:2725054

    CAS  PubMed  Google Scholar 

  • Lofts B. 2012. Physiology of the Amphibian. Vol. 3. Academic Press, INC, New York, 658 pp. ISBN: 0-12-455403-2

    Google Scholar 

  • Luer C.A., Walsh C.J., Bodine A.B., Wyffels J.T. & Scott T.R. 1995. The elasmobranch thymus: Anatomical, histological, and preliminary functional characterization. J. Exp. Zool. 273 (4): 342–354. DOI: 10.1002/jez.1402730408

    Article  Google Scholar 

  • Lutton B.V. & Callard I.P. 2008. Influence of reproductive activity, sex steroids, and seasonality on epigonal organ cellular proliferation in the skate (Leucoraja erinacea). Gen. Comp. Endocrinol. 155 (1): 116–125. DOI: 10.1016/j.ygcen. 2007.03.011

    Article  CAS  PubMed  Google Scholar 

  • Manley N.R., Richie E.R., Blackburn C.C., Condie B.G. & Sage J. 2011. Structure and function of the thymic microenvironment. Front. Biosci. 16 (7): 2461–2477. DOI: 10.2741/3866

    Article  CAS  Google Scholar 

  • Manning M. J. 1979. Evolution of the vertebrate immune system. J. R. Soc. Med 72 (9): 683–688. DOI: 10.1177/014107687907200911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning M.J. & Horton J.D. 1969. Histogenesis of lymphoid organs in larvae of the South African clawed toad, Xenopus laevis (Daudin). J. Embryol. Exp. Morph. 22 (2): 265–277. PMID: 5361557

    CAS  PubMed  Google Scholar 

  • Manning M.J. & Horton J.D. 1982. RES Structure and Function of the Amphibia, pp. 423–459. In: Cohen N. & Sigel N.N. (eds), The Reticuloepithelial System 3. A Comprehensive Treatise. Plenum Press, New York.

    Google Scholar 

  • Mattisson A. & Fänge R. 1982. The cellular structure of the Leydig organ in the shark, Etmopterus spinax (L.). Biol. Bull. 162 (2): 182–194. DOI: 10.2307/1540813

    Article  Google Scholar 

  • Mattisson A., Fänge R. & Zapata A. 1990. Histology and ultrastructure of the cranial lymphohaemopoietic tissue in Chimaera monstrosa (Pisces, Holocephali). Acta Zool. 71 (2): 97–106. DOI: 10.1111/j.1463-6395.1990.tb01074.x

    Article  Google Scholar 

  • Mayer S. 1888. Zur lehre von der Schilddrüse und thymus bei Amphibien. Anat. Anz. 3: 97–103.

    Google Scholar 

  • Mohammad M.G., Chilmonczyk S., Birch D., Aladaileh S., Raftos D. & Joss J. 2007. Anatomy and cytology of the thymus in juvenile Australian lungfish, Neoceratodus forsteri. J. Anat. 211 (6): 784–797. DOI: 10.1111/j.1469-7580.2007.00814.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mravec B., Ondicova K., Valaskova Z., Gidron Y. & Hulin I. 2009. Neurobiological principles in the etiopathogenesis of disease: when diseases have a head. Med. Sci. Monit. 15 (1): RA6–16. PMID: 19114982

    Google Scholar 

  • Mueller S.N. & Germain R.N. 2009. Stromal cell contributions to the homeostasis and functionalityof the immune system. Nat. Rev. Immunol. 9 (9): 618–629. DOI: 10.1038/nri2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukkaruppan V.R., Borysenko M. & El Ridi R. 1982. RES Structure and function of thse Reptilia, Chapter 12, pp. 461–508. DOI: 10.1007/978-1-4684-4166-612. In: Cohen N. & Sigel N.N. (eds), The Reticuloeptelial System. A Comprehensive Treatise, Plenum Press, New York, 757 pp. ISBN: 978-1-4684-4168-0

    Google Scholar 

  • Nakagawa Y., Ohigashi I., Nitta T., Sakata M., Tanaka K., Murata S., Kanagawa O. & Takahama Y. 2012. Thymic nurse cells provide microenvironment for secondary T cell receptor a rearrangement in cortical thymocytes. Proc. Natl. Acad. Sci. USA. 109 (50): 20572–20577. DOI: 10.1073/pnas.1213069109

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura H. & Ayer-Le Licvre C. 1986. Neural crest and thymic myoid cells. Curr. Top. Dev. Biol. 20: 111–115. DOI: 10.1016/S0070-2153(08)60658-4

    Article  CAS  PubMed  Google Scholar 

  • Nelsen O.E. 1953. Comparative embryology of the vertebrates. McGraw-Hill Book Company, INC. New York, 982 pp. DOI: 10.5962/bhl.title.6451

    Google Scholar 

  • Nishio H., Matsui K., Tsuji H., Tamura A. & Suzuki K. 2001. Immunolocalization of the mitogen-activated protein kinase signaling pathway in Hassall’s corpuscles of the human thymus. Acta Histochem. 103 (1): 89–98. DOI: 10.1078/0065-1281-00581

    Article  CAS  PubMed  Google Scholar 

  • Nishino M., Ashiku S.K., Kocher O.N., Thurer R.L., Boiselle P.M. & Hatabu H. 2006. The thymus: a comprehensive review. Radiographics 26 (2): 335–348. DOI: 10.1148/rg.2620 45213

    Article  PubMed  Google Scholar 

  • Oguri M. 1983. On the Leydig organ in the esophagus of some elasmobranchs. Bull. Jap. Soc. Sci. Fish. 49 (7): 989–991. DOI: http://doi.org/10.2331/suisan.49.989

    Article  Google Scholar 

  • Ohno H. 2016. Intestinal M cells. J. Biochem. 159 (2): 151–160. DOI: 10.1093/jb/mvv121

    Article  CAS  PubMed  Google Scholar 

  • Oláh I., Glick B. & Taylor R.L. Jr. 1984. Meckel’s diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat. Rec. 208 (2): 253–263. DOI: 10.1002/ar.1092080212

    Article  PubMed  Google Scholar 

  • Osório J. & Rétaux S. 2008. The lamprey in evolutionary studies. Dev. Genes Evol. 218 (5): 221–235. DOI: 10.1007/s00427-008-0208-1

    Article  PubMed  Google Scholar 

  • Ottaviani E., Franchini A. & Franceschi C. 1997. Evolution of neuroendocrine thymus: studies on POMC-derived peptides, cytokines and apoptosis in higher and lower vertebrates. J. Neuroimmunol. 72 (1): 67–74. DOI: 10.1016/S0165-5728(96)00146-4

    Article  CAS  PubMed  Google Scholar 

  • Øverg°ard A.C., Fiksdal I.U., Nerland A.H. & Patel S. 2011. Expression of T-cell markers during Atlantic halibut (Hippoglossus hippoglossus L.) ontogenesis. Dev. Comp. Immunol. 35 (2): 203–213. DOI: 10.1016/j.dci.2010.09.009

    Article  CAS  Google Scholar 

  • Paganelli R., Giovannetti A., Pierdominici M., Di Iorio A., Cianci R., Murdaca G., Puppo F. & Pandolfi P. 2008. Apoptosis in the homeostasis of the immune system and in human immune mediated disease. Curr. Pharm. Des. 14 (3): 253–268. DOI: 10.2174/138161208783413310

    Article  PubMed  Google Scholar 

  • Page M. & Rowley A.F. 1982. A morphological study of pharyngeal lymphoid accumulations in larval lampreys. Dev. Comp. Immunol. Suppl 2: 35–40.

    Google Scholar 

  • Panse Le R. & Berrih-Aknin S. 2005. Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways. Cell Death Differ. 12 (5): 463–472. DOI: 10.1038/sj.cdd.4401611

    Article  PubMed  Google Scholar 

  • Patel S., Sørhus E., Fiksdal I.U., Espedal P.G., Bergh O., Rødseth O.M., Morton H.C. & Nerland A.H. 2009. Ontogeny of lymphoid organs and development of IgM-bearing cells in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 26 (3): 385–395. DOI: 10.1016/j.fsi.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  • Payne A.P. 1994. The Harderian gland: a tercentennial review. J. Anat. 185 (Pt 1): 1–49. PMID: 7559104

    Google Scholar 

  • Picchietti S., Guerra L., Buonocore F., Randelli E., Fausto A.M. & Abelli L. 2009. Lymphocyte differentiation in sea bass thymus: CD4 and CD8-alpha gene expression studies. Fish Shellfish Immunol. 27 (1): 50–56. DOI: 10.1016/j.fsi.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  • Pospíšilová V., Slípka J. & Cerný R. 2003. The relation of the germ layers to the ecto-mesenchyme of the neural placodes during thymus development. Trends and Perspectives of Contemporary Morphology. 40th Congress of the Czech Anatomical Society, Plzen, 10.-12.9.2002. Plzen Lék. Sbor. 78 (Suppl 1): 23–28.

    Google Scholar 

  • Prymak T. 1902. Beiträge zur Kenntniss des feinen Baues und der Involution der Thymusdrüse bei den Teleostieren. Anat. Anz. 21: 164.

  • Raica M., Cîmpean A.M., Encică S. & Cornea R. 2007. Involution of the thymus: a possible diagnostic pitfall. Rom. J. Morphol. Embryol. 48 (2): 101–106.

    CAS  PubMed  Google Scholar 

  • Raica M., Encică S., Motoc A., Cîmpean A.M., Scridon T. & Bârsan M. 2006. Structural heterogeneity and immunohistochemical profile of Hassall corpuscles in normal human thymus. Ann. Anat. 188 (4): 345–352. DOI: 10.1016/j.aanat. 2006.01.012

    Article  PubMed  Google Scholar 

  • Ratcliffe M.J. 2002. B cell development in gut associated lymphoid tissues. Vet. Immunol. Immunopathol. 87 (3-4): 337–440. PMID: 12072255

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe M.J. 2006. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev. Comp. Immunol. 30 (1-2): 101–118. DOI: 10.1016/j.dci.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  • Reboldi A. & Cyster J.G. 2016. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271 (1): 230–245 DOI: 10.1111/imr.12400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes García M.G. & García Tamayo F. 2013. The importance of the nurse cells and regulatory cells in the control of T lymphocyte responses. BioMed. Res. Int. 2013: 15 pp. DOI: 10.1155/2013/352414

  • Rezzani R., Bonomini F. & Rodella L.F. 2008. Histochemical and molecular overview of the thymus as site for T-cells development. Prog. Histochem. Cytochem. 43 (2): 73–120. DOI: 10.1016/j.proghi.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  • Rezzani R., Nardo L., Favero G., Peroni M. & Rodella L.F. 2014. Thymus and aging: morphological, radiological, and functional overview. Age (Dordr.). 36 (1): 313–351. DOI: 10.1007/s11357-013-9564-5

    Article  PubMed  Google Scholar 

  • Rodewald H. R. 2008. Thymus organogenesis. Annu. Rev. Immunol. 26: 355–388. DOI: 10.1146/annurev.immunol.26. 021607.090408

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez R.M., López-Vázquez A. & López-Larrea C. 2012. Immune systems evolution. Adv. Exp. Med. Biol. 739: 237–251. DOI: 10.1007/978-1-4614-1704-0 15.

    Article  PubMed  Google Scholar 

  • Rollins-Smith L.A., Blair P.J. & Davis A.T. 1992. Thymus ontogeny in frogs: T-cell renewal at metamorphosis. Dev. Immunol. 2 (3): 207–213. DOI: 10.1155/1992/26251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano N., Fanelli M., Maria Del Papa G., Scapigliati G. & Mastrolia L. 1999a. Histological and cytological studies on the developing thymus of sharpsnout seabream, Diplodus puntazzo. J. Anat. 194 (Pt 1): 39–50. DOI: 10.1046/j.1469-7580.1999.19410039.x

    Article  Google Scholar 

  • Romano N., Taverne-Thiele A.J., Fanelli M., Baldassini M.R., Abelli L., Mastrolia L., Van Muiswinkel W.B. & Rombout, J.H. 1999b. Ontogeny of the thymus in a teleost fish, Cyprinus carpio L.: developing thymocytes in the epithelial microenvironment. Dev. Comp. Immunol. 23 (2): 123–137. DOI: 10.1016/S0145-305X(98)00053-6

    Article  CAS  PubMed  Google Scholar 

  • Rosenstiel P., Philipp E.E., Schreiber S. & Bosch T.C. 2009. Evolution and function of innate immune receptors -insights from marine invertebrates. J. Innate. Immun. 1 (4): 291–300. DOI: 10.1159/000211193.

    Article  CAS  PubMed  Google Scholar 

  • Rumfelt L.L., McKinney E.C., Taylor E. & Flajnik M.F. 2002. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand. J. Immunol. 56 (2): 130–148. DOI: 10.1046/j.1365-3083.2002.01116.x

    Article  CAS  PubMed  Google Scholar 

  • Saha N.R., Smith J. & Amemiya C.T. 2010. Evolution of adaptive immune recognition in jawless vertebrates. Semin. Immunol. 22 (1): 25–33. DOI: 10.1016/j.smim.2009.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarang Z., Garabuczi É., Joós G., Kiss B., Tóth K., Rühl R. & Szondy Z. 2013. Macrophages engulfing apoptotic thymocytes produce retinoids to promote selection, differentiation, removal and replacement of double positive thymocytes. Immunobiol. 218 (11): 1354–1360. DOI: 10.1016/j.imbio. 2013.06.009

    Article  CAS  Google Scholar 

  • Scott T.R. 2004. Our current understanding of humoral immunity of poultry. Poultry Sci. 83 (4): 574–579. DOI: 10.1093/ps/83.4.574

    Article  CAS  Google Scholar 

  • Schrøder M.B., Villena A.J. & Jørgensen T.O. 1998. Ontogeny of lymphoid organs and immunoglobulin producing cells in Atlantic cod (Gadus morhua L.). Dev. Comp. Immunol. 22 (5-6): 507–517. DOI: 10.1016/S0145-305X(98)00030-5

    Article  PubMed  Google Scholar 

  • Seto F. 1981. Early development of the avian immune system. Poultry Sci. 60 (9): 1981–1995. DOI: 10.3382/ps.0601981

    Article  CAS  Google Scholar 

  • Sharma J.M. 1997. The structure and function of the avian immune system. Acta Vet. Hung. 45 (3): 229–238. PMID: 9276985

    CAS  PubMed  Google Scholar 

  • Síma P. 1997. The development of the defence system during evolution, pp. 6–20. In: Heidt P.J., Rusch V. & der Waaij D. (eds), Old Herborn University Seminar Monograph, 10. New Antimicrobial Strategies, Herborn Litterae, Herborn-Dill, 137 pp. ISBN: 3-923022-20-4

    Google Scholar 

  • Sima P. & Vetvicka V. 1993. Evolution of immune reactions. Crit. Rev. Immunol. 13 (2): 83–114. PMID: 8352910

    CAS  PubMed  Google Scholar 

  • Slípka J. 1986. Evolutionary morphology of the branchial region as the reflection of environmental changes, pp. 203–211. In: Novák V.J.A., Vancata V. & Vancatová M.A. (eds), Behaviour, Adaptation and Evolution, Czechoslovak Academy of Sciences, Praha.

    Google Scholar 

  • Slipka J. & Slipka J.Jr. 1996. The palatine tonsil as an evolutionary novelty. Acta Otolaryngol. Suppl. 523: 8–11. PMID: 9082817

    CAS  PubMed  Google Scholar 

  • Smith K.G. & Hunt J.L. 2004. On the use of spleen mass as a measure of avian immune system strength. Oecologia 138 (1): 28–31. DOI: 10.1007/s00442-003-1409-y

    Article  PubMed  Google Scholar 

  • Spalding H. & Heath T. 1987. Pathways of lymph flow through superficial inguinal lymph nodes in the pig. Anat. Rec. 217 (2): 188–195. DOI: 10.1002/ar.1092170211

    Article  CAS  PubMed  Google Scholar 

  • Sypek J. & Borysenko M. 1988. Reptiles. In: Rowley A.F. & Ratcliffe N.A. (eds), Vertebrate Blood Cells, Press Sindicate in the University of Cambridge, 432 pp. ISBN: 0-521-26032-9

    Google Scholar 

  • Štěrba G. 1953. Die Physiologie und Histogenese der Schilddrüse und des Thymus beim Bachneunauge (Lampetra planeri Bloch = Petromyzon planeri Bloch) als Grundlagen phylogenetischer Studien über die Evolution der innersekretorischen Kiemendarmderivate nebenst eingehenden Mitteilungen über die Bionomie der Bachneunaugen und morphologisch-physiologischen Untersuchungen über die Kiemendarm. Wissenschaftliche Zeitschrift. Mathematisch-Naturwissenschaftliche Reihe 3 (2): 239–298.

    Google Scholar 

  • Terszowski G., Muller S.M., Bleul C.C., Blum C., Schirmback R., Reimann J., Pasquier L. D., Amagai T., Boehm T. & Rodewald H.R. 2006. Evidence for a functional second thymus in mice. Science 312 (5771): 284–287. DOI: 10.1126/science. 1123497

    Article  CAS  PubMed  Google Scholar 

  • Tischendorf F. 1985. On the evolution of the spleen. Experientia 41 (2): 145–152. PMID: 3972062

    Article  CAS  PubMed  Google Scholar 

  • Tochinai S. 1976. Lymphoid changes in Xenopus laevis following thymectomy at the initial stage of its histogenesis. J. Fac. Sci. Hokkaido Univ. Ser. Zool. 20 (2): 175–184.

    Google Scholar 

  • Valančiūtė A., Mozuraitė R., Balnytė I., Didžiapetrienė J., Matusevicius P. & Stakišaitis D. 2015. Sodium valproate effect on the structure of rat glandule thymus: Gender-related differences. Exp. Toxicol. Pathol. 67 (7-8): 399–406. DOI: 10.1016/j.etp.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  • Valasek P., Macharia R., Neuhuber W.L., Wilting J., Becker D.L. & Patel K. 2007. Lymph heart in chick-somitic origin, development and embryonic oedema. Development. 134 (24): 4427–4436. DOI: 10.1242/dev.004697

    Article  CAS  PubMed  Google Scholar 

  • Van de Pavert S.A. & Mebius R.E. 2010. New insights into the development of the lymphoid tissue. Nat. Rev. Immunol. 10 (9): 664–674. DOI: 10.1038/nri2832

    Article  CAS  PubMed  Google Scholar 

  • Varas A., Sacedón R., Hernandez-López C., Jiménez E., Garcia-Ceca J., Arias-Díaz J., Zapata A.G. & Vicente A. 2003. Age-dependent changes in thymic macrophages and dendritic cells. Microsc. Res. Techn. 62 (6): 501–507. DOI: 10.1002/jemt.10411

    Article  CAS  Google Scholar 

  • Varga I., Galfiova P., Jablonska-Mestanova V., Polak S. & Adamkov M. 2011a. Some aspects of early development of the thymus: Embryological basis for ectopic thymus and thymopharyngeal duct cyst. Rev. Arg. Anat. Clin. 3 (1): 22–31.

    Google Scholar 

  • Varga I., Mikusova R., Pospisilova V., Galfiova P., Adamkov M., Polak S. & Galbavy S. 2009. Morphologic heterogeneity of human thymic nonlymphocytic cells. Neuro Endocrinol. Lett. 30 (3): 275–283. PMID: 19855349

    PubMed  Google Scholar 

  • Varga I., Nescakova E., Toth F., Uhrinova A. & Adamkov M. 2011b. Nutrition and immune system: the size of the thymus as an indicator of the newborn’s nutrition status. Anthropol. Anz. 68 (3): 265–274. PMID: 21905416

    Article  Google Scholar 

  • Varga I., Pospisilova V., Gmitterova K., Galfiova P., Polak S. & Galbavy S. 2008. The phylogenesis and ontogenesis of the human pharyngeal region focused on the thymus, parathyroid, and thyroid glands. Neuroendocrinol. Lett. 29 (6): 837–845. PMID: 19112385

    PubMed  Google Scholar 

  • Varga I., Pospisilova V., Jablonska V., Sisovsky V., Galfiova P., Polak S. & Adamkov M. 2010. Thymic Hassall’s bodies of children with congenital heart defects. Bratisl. Lek. Listy 111 (10): 552–557. PMID: 21125801

    CAS  PubMed  Google Scholar 

  • Varga I., Pospisilova V., Jablonska-Mestanova V., Galfiova P. & Polak S. 2011c. The thymus: picture review of human thymus prenatal development. Bratisl. Lek. Listy 112 (7): 368–376. PMID: 21744730

    CAS  PubMed  Google Scholar 

  • Vasse J. 1983. Transplantation of turtle embryonic thymus into quail embryo: colonization by quail cells. J. Embryol. Exp. Morph. 77: 309–322. PMID: 6606698

    CAS  PubMed  Google Scholar 

  • Vigliano F.A., Losada A.P., Castello M., Bermúdez R. & Quiroga M.I. 2011. Morphological and immunohistochemical characterisation of the thymus in juvenile turbot (Psetta maxima L.). Cell Tissue Res. 346 (3): 407–416. DOI: 10.1007/s00441-011-1282-7

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto T., Tomisaka R., Nishikawa Y., Sato H., Yoshino T. & Takahashi K. 2008. Identification and characterization of human thymic cortical dendritic macrophages that may act as professional scavengers of apoptotic thymocytes. Immunobiol. 213 (9-10): 837–847. DOI: 10.1016/j.imbio.2008.07. 032

    Article  CAS  Google Scholar 

  • Wetherall J. D. & Turner K. J., 1972. Immune response of the lizard, Tiliqua rugose. Aust. J. Exp. Biol. Med. Sci. 50: 79–95. DOI: 10.1038/icb.1972.7

    CAS  Google Scholar 

  • White R.G. 1976. Organization of the lymphoid tissue of Gallus domesticus, pp. 15–29. In: Payne L.N. (ed.), Differential Diagnosis of Avian Lymphoid Leucosis and Marek’s Disease, Commission of the European Communities. Coordination of Agricultural research. Proceedings of a Seminar in the EEC Programme for Coordination of Research on Avian Leukosis held at the Royal Veterinary and Agricultural University of Copenhagen, Copenhagen, Denmark, Directorate-General, Scientific and Technical Information and Information Management, Luxembourg 99 pp.

    Google Scholar 

  • Wolke R.E. 1992. Piscine macrophage aggregates: A review. Annu. Rev. Fish Dis. 2: 91–108. DOI: 10.1016/0959-8030(92) 90058-6

    Article  Google Scholar 

  • Wong E.S., Papenfuss A.T., Heger A., Hsu A.L., Ponting C.P., Miller R.D., Fenelon J.C., Renfree M.B., Gibbs R.A. & Belov K. 2011. Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby. BMC Genomics 12: 420. DOI: 10.1186/1471-2164-12-420

  • Yasuda M., Jenne C.N., Kennedy L.J. & Reynolds J.D. 2006. The sheep and cattle Peyer’s patch as a site of B-cell development. Vet. Res. 37 (3): 401–415. DOI: 10.1051/vetres:2006008

    Article  CAS  PubMed  Google Scholar 

  • Zaitseva M., Kawamura T., Loomis R., Goldstein H., Blauvelt A. & Golding H. 2002. Stromal-derived factor 1 expression in the human thymus. J. Immunol. 168 (6): 2609–2617. DOI: 10.4049/jimmunol.168.6.2609

    Article  CAS  PubMed  Google Scholar 

  • Zapata A. & Amemiya C.T. 2000. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbial. Immunol. 248: 67–107. DOI: 10.1007/978-3-642-59674-25

    CAS  Google Scholar 

  • Zapata A., Diez B., Cejalvo T., Gutiérrez-de Frías C. & Cortés A. 2006. Ontogeny of the immune system of fish. Fish Shellfish Immunol. 20 (2): 126–136. DOI: 10.1016/j.fsi.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  • Zapata A.G., Torroba M., Vicente A., Varas A., Sacedón R. & Jiménez E. 1995. The relevance of cell microenvironments for the appearance of lympho-haemopoietic tissues in primitive vertebrates. Histol. Histopathol. 10 (3): 761–778. PMID:7579826

    CAS  PubMed  Google Scholar 

  • Zapata A., Villena A. & Cooper E.L. 1981a. Ultrastructure of the jugular body of Rana pipiens. Cell Tissue Res. 221 (1): 193–202. DOI: 10.1007/BF00216581

    Article  CAS  PubMed  Google Scholar 

  • Zapata A., Villena A., Razquin B. & Cooper E.L. 1981b. The jugular body in anuran amphibians: role in immunity. Dev. Comp. Immunol. 5 (Suppl. 1): 129–135.

    Article  Google Scholar 

  • Zidan M. & Pabst R. 2010. Histology of hemal nodes of the water buffalo (Bos bubalus). Cell Tissue Res. 340 (3): 491–496. DOI: 10.1007/s00441-010-0962-z

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Varga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mešťanová, V., Varga, I. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus. Biologia 71, 1080–1097 (2016). https://doi.org/10.1515/biolog-2016-0137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0137

Key words

Navigation