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Abstract—The increasing pervasion of information and com-
munication technology (ICT) in energy systems allows for the
development of new control concepts on all voltage levels. In
the distribution grid, this development is accompanied by a
still increasing penetration with distributed energy resources like
photovoltaic (PV) plants, wind turbines or small scale combined
heat and power (CHP) plants. Combined with shiftable loads
and electrical storage, these energy units set up a new flexibility
potential in the distribution grid that can be tapped with
ICT-based control following the long-term goal of substituting
conventional power generation. In this contribution, we propose
an architectural model and algorithms for the self-organization
of these distributed energy units within dynamic virtual power
plants (DVPP) along with first results from a feasibility study of
the integrated process chain from market-driven DVPP formation
to product delivery.

Index Terms—Smart Grid, Virtual Power Plant, Agent-Based
Control, Self-Organization.

I. INTRODUCTION

D
ISTRIBUTED energy resources like photovoltaic (PV)

plants, wind turbines or small scale combined heat and

power (CHP) plants entered the energy market in many Euro-

pean countries, especially Germany, with the financial security

of guaranteed electrical feed-in tariffs. With their share in the

market still rising, a concept is needed to integrate them into

the very same regarding both real power and ancillary services

to reduce subsidy dependence and follow the goals as defined

by the European Commission.

Virtual power plants are a well-known concept for the

aggregation of distributed energy resources (DER) to deliver

both energy products and ancillary services [1]. Besides the

control of generation by distributed energy resources like e. g.

photovoltaic plants, shiftable loads like heat pumps, water

boilers or air conditioners can be controlled to adapt the

load profile regarding different optimization targets. Electrical

storage may additionally be a new player in this scene, deliver-

ing even more flexibility for the optimized use of distributed

generation. To address these three aspects, generation, load

and storage, we will refer to distributed energy units (DEU)

for the rest of this paper.

Parts of this work have been funded by the Lower Saxony Ministry of
Science and Culture through the ‘Niedersächsisches Vorab’ grant programme
(grant ZN 2764) within the project cluster Smart Nord.

In this contribution, we present an architectural model and

algorithms for conjoint distributed aggregation algorithms us-

ing flexibility modelling and distributed scheduling heuristics.

We present the evaluation environment that will be used for the

evaluation of these conjoint processes within dynamic virtual

power plants (DVPP) for the use case of active power delivery

on current energy markets like the European Power Exchange

(EPEX SPOT), along with first results from a feasibility study

implementing these processes. In developing the integrated

process shown here, we followed the Smart Grid Algorithm

Engineering (SGAE) approach described in [2].

To tap the full flexibility potential of all energy units in

the distribution grid we set up the following domain-driven

paradigms for DVPPs (cf. [3]):

• Distributed energy units have to trade their services on

markets, for both active power products, and ancillary

services (as far as possible; see e. g. [4] for the position

of the German Federal Network Agency regarding this

topic).

• To dynamically adapt to current power system opera-

tional states and handle the vast amount of DEU in the

distribution grid, an approach based on self-organization

principles is used. By this means, characteristics like

robustness, scalability and adaptivity of the overall system

should be gained.

• DVPPs should be set up on a per-product base, thus

allowing for optimal aggregation of energy units regard-

ing the products needed. The paradigm of a dynamic

VPP with respect to the product obligation is completely

different from current virtual power plant concepts. It

has to be evaluated, if more flexibility can be extracted

from the distribution grid with such a highly dynamic

approach.

• The potential of DVPPs for power system control lies in

their units’ flexibility. Therefore a generic representation

of these flexibilities is needed, building the foundation for

all DVPP mechanisms concerned with DEU scheduling.

• For active power delivery on energy markets, the oper-

ation of DEUs is controlled using operation schedules

for all different types of units. The resolution of the

DEUs’ operation schedules should reflect current sched-

ule resolutions by indicating mean active power values
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for each 15 min. time interval. This is different to the

current handling of renewable energy sources – current

systems work with prognoses and use schedules only for

controllable generating electricity units.

• To deliver ancillary services with locality constraints (like

voltage control), DVPPs have to be able to reflect the

grid topology. Therefore grid topology should be an

optional parameter in the aggregation process and within

the operation of DVPPs.

Within this context, the objective of this contribution is to

introduce a seamless process chain for day-ahead based active

power provision by means of DVPPs. We present an integrated

multi-agent system (MAS) realizing the aggregation algorithm,

the scheduling heuristic as well as the flexibility modelling

used for DVPP management. For this, we start with an

overview on the state of the art regarding distributed control in

energy systems in Section II and show why this control scheme

is appropriate for DEU interaction on energy markets. In

Section III we introduce the use case of active power delivery

on day-ahead markets in detail. In Section IV the algorithms

for the aggregation of agents to dynamic VPPs are explained,

showing how grid topology is a guidance in this process

without yielding hierachically restrained static aggregation

schemes. The scheduling of DEU is depicted in Section V.

In Section VI the generation of surrogate models to represent

DEU flexibilities is explained. The integrated agent model with

respect to the generation and usage of this surrogate model is

shown in Section VII. The evaluation architecture and first

results from a feasibility study are presented and discussed in

Section VIII. We finish this contribution with a conclusion and

an outlook on future work in Section IX.

II. DISTRIBUTED CONTROL IN ENERGY SYSTEMS

The operational management of energy systems involves

a number of complex tasks ranging from technical aspects

like supervisory control and data acquisition (SCADA) to

organizational measures performed by business management

systems (BMS). These are coupled within an energy manage-

ment system (EMS) based on information and communication

technology (ICT). Traditionally, the EMS is implemented as

a centralized control system. However, given the increasing

share of DEUs in the distribution grid today, the evolution of

the classical, rather static (from an architectural point of view)

power system to a dynamic, continuously reconfiguring system

of individual decision makers endangers the feasibility of such

centralized control schemes. In the seminal work of Wu et al.

[5], the need for decentralized control has been identified

as follows: “Control centers today are in the transitional

stage from the centralized architecture of yesterday to the

distributed architecture of tomorrow. [. . . ] To summarize, in

a competitive environment, economic decisions are made by

market participants individually and system-wide reliability

is achieved through coordination among parties belonging

to different companies, thus the paradigm has shifted from

centralized to decentralized decision making.” In line with

this vision, the International Energy Agency (IEA) describes a

possible transition to decentralized control in three steps [6]:

1) Accommodation. Distributed generation is accommo-

dated into the current market with the right price signals.

Centralized control of the networks remains in place.

2) Decentralization. The share of DG increases. Virtual

utilities optimize the services of decentralized providers

through the use of common communications systems.

Monitoring and control by local utilities is still required.

3) Dispersal. Distributed power takes over the electric-

ity market. Microgrids and power parks effectively

meet their own supply with limited recourse to grid-

based electricity. Distribution operates more like a co-

ordinating agent between separate systems rather than

controller of the system.

The concept of a virtual utility mentioned therein was intro-

duced in the late nineties and describes a “[. . . ] flexible col-

laboration of independent, market-driven entities that provide

efficient energy service demanded by consumers [. . . ].” [7]

Virtual power plants (VPP) have been studied extensively as

a derivation from this concept with a number of successful

realizations [8]. Additionally, different operational targets have

been defined and implemented for VPPs, like aggregating

energy (commercial VPPs) or delivering system services (tech-

nical VPPs) [1]. These VPP concepts form a basis for the

decentralization stage in the transition path above. However,

such VPPs usually focus on the long-term aggregation of

generators (and sometimes storages) only and are each still

operated in a centralized manner. For an implementation of

the dispersal stage in the transition path, a more flexible

concept is required. In the last years, a significant body of

research emerged on this topic. For instance, [9] surveys the

use of agent-based control methods for power engineering

applications. Exemplary applications can be found in [10],

[11], [12]. Finally, a research agenda in this context was

proposed recently in [13].

In contrast to the work referenced above, the concept

of DVPPs explicitly takes the current market situation into

account for the process of forming aggregations of DEUs:

DVPPs form with respect to concrete products at an energy

market, and will dissolve after delivering a product. Addition-

ally, fully distributed control algorithms are being used, as will

be shown in the following sections, building the foundation

for the dispersal stage in the mentioned transition path. A

preliminary description of the concept including a detailed

differentiation from related approaches was given in [3].

III. DYNAMIC VIRTUAL POWER PLANTS

To introduce the concept of dynamic virtual power plants

and show which tasks have to be performed by the software

agents, we refer to the use case of active power products traded

on the day-ahead power market, where product trading is based

on an auction mechanism as described in [3] (see Fig. 1).

From the market perspective, three different phases have to

be distinguished. In the first phase, bids can be placed in the

so-called order book for predefined product types. Once the
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Fig. 1. Simplified use case of a dynamic VPP delivering energy products
on a day-ahead market

order book is closed (e. g. at 12 a.m. for active power products

traded day-ahead in Germany at EPEX SPOT) a matching

mechanism clears supply and demand bids to set up the market

price. In the last phase, these products have to be delivered,

but no distinct market actions are entangled with this phase:

the surveillance of product delivery and associated actions for

balancing are subject to balancing group management.

To implement this process with regard to DVPPs, unit agents

are set up to represent distinct DEUs within a multi-agent

system. Four sequential phases within these unit agents are

needed for active power delivery on day-ahead markets, as

can be seen on the right hand side of Fig. 1:

1) Dynamic VPP aggregation: First, energy units have to

be appropriately aggregated to DVPPs with the goal to

deliver active power products. Grid topology has to be

an optional parameter in this phase.

2) Market interaction: In the second phase, DVPPs place

their active power products on the market by means of

a representative agent for each respective DVPP and are

informed about acceptance after market matching. Thus,

after market matching the units’ obligations regarding

their power contributions are known.

3) Intra-DVPP optimization: Within a third phase, an

intra-DVPP optimization is performed, taking into ac-

count these obligations and updated prognoses regarding

the units’ operational states.

4) Continuous scheduling: The last phase is concerned

with continuous energy scheduling to ensure product

fulfillment. In case of an incident endangering product

delivery a rescheduling of the units has to be performed.

In Fig. 2 the same process is shown from a more detailed

perspective regarding the software agents. An exemplary en-

ergy unit is shown on the left hand side that is controlled by

a unit agent. To the right of this unit agent, one additional

unit agent is shown with less details as example for all other

unit agents. Last, a market interaction agent is shown. Details

on the different agent roles during DVPP setup are given in

Section IV.

In the first phase of dynamic VPP aggregation, the agent

unit_agent_1 identifies relevant market products via an inter-

action with the market agent. With this information, it starts

the VPP aggregation process. The result of this process is a

(product-specific) DVPP consisting of a set of unit agents, with

a designated representative and a DVPP schedule mapping the

DEUs to operation schedules in such a way that the product

can be fulfilled.

In the next phase (market interaction), the representative

bids at the market. After market matching, it is informed about

the product to be delivered. The representative communicates

the needed contributions to all other unit agents within the

DVPP. A unit agent might have proposed active power delivery

of his unit in several DVPPs (e. g. for adjacent hourly time

intervals, i. e. different power products). As all obligations are

known to all unit agents within the DVPP after market match-

ing, an optimization can use remaining flexibilities. For all

DEU within the DVPP, updated forecasts and measurements

can be used to optimize product delivery in this step, before

configuring the units with these optimized schedules.

All unit agents have to follow the same task in the last phase,

from unit schedule configuration until the product delivery

is finished: They have to ensure the delivery of the DVPP

active power product. Therefore, the unit agents continuously

(e. g. on a minute base) check the unit’s operational state and

check it for schedule compliance. If a unit is not following the

desired schedule and if the overall DVPP active power contri-

bution will not fulfill the defined product as a consequence, a

rescheduling is performed within the DVPP agents.

In the following sections we will focus on the algorithmic

details of the aforementioned steps.

IV. DYNAMIC AGGREGATION

The problem of dividing the unit agents into several DVPPs

can be generally described as coalition structure generation

(CSG) problem. Goal of CSG is to find an optimal partition of

a given set of agents A, referred to as coalition structure (CS).

The elements of a coalition structure are coalitions (C) and

can be evaluated using a value function v(C), where the value

of a coalition structure, V (CS), is calculated as the sum of

values of all comprised coalitions. Goal of a CSG algorithm is

to maximize V (CS). There are different algorithmic solutions

for CSG problems, including dynamic programming, anytime

optimal solution strategies and heuristic approaches [14]. The

dynamic aggregation process described in the following pro-

vides a heuristic solution to the CSG problem. For a detailed

description of the considered setting see also [15].

The dynamic aggregation of energy units takes place within

a defined market area which is represented by a power grid

comprising a set of connected DEUs. Each DEU is supervised

by a unit agent as described in the previous section. General

goal of the aggregation process is an optimized provision of

active power on a global level. To this end, agents are generally

able to cooperate in order to form coalitions and aggregate

the capabilities of their supervised DEU. The purpose of

each coalition is the provision of a day-ahead active power
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Energy Unit

time

unit_agent_1 / representative: UnitAgent Market

Agent

unit_agent_n

responder: 

UnitAgent

Continuous scheduling

1

2

3

4

Flexibility assessment

Check for market

products

Unit operational

state

Inter-Agent

Communication

Unit operational

state

Unit operational

state

...

Market interaction

Bid at markets / 

check matching

Market interaction

Scheduling

Unit 

configuration

Unit 

configuration

Flexibility 

assessment

Flexibility 

assessment

Flexibility 

assessment

Check schedule

compliance

(only for role representative)

Communicate

product

contributions

Schedule 

optimization

Dynamic VPP aggregation

DVPP

aggregation

Intra-DVPP 

optimization

Intra-DVPP 

optimization

Intra-DVPP optimization

Schedule 

optimization

Schedule 

optimization

Fig. 2. Agent tasks for DVPP setup, market interaction and product delivery

product which is intended to be supplied within a correspond-

ing product horizon reflecting the time of fulfillment. Thus,

the process of DEU aggregation directly corresponds to the

one of forming coalitions of supervising unit agents. Each

agent contributes to an aspired power product by providing

an amount of electrical energy according to the operational

potentials of its energy unit. As optimization criteria, agents

take the aspired target product as well as the respective costs

of provision into account.

In accordance with the requirements and paradigms de-

scribed in Section I, our proposed mechanism for unit aggrega-

tion is based on the principle of self-organization where agents

form coalitions without external control of a superior instance.

Moreover, aggregation takes place in a fully distributed and

temporally flexible fashion, meaning that the organizational

binding resulting from common product procurement is re-

stricted to the provision of a provided product only and

coalitions dissolve after their fulfillment. The mechanism is

an iterative process, each cycle consisting of four activities

which are carried out by each agent with the goal of forming

coalitions with other unit agents and thus aggregating respec-

tive operational capabilities of their supervised energy units:

1) Product portfolio generation: In the course of the first

activity an agent creates an individual product portfolio

comprising a set of target products which it is generally

willing to trade on the market. These target products

satisfy all operational constraints of its supervised unit

(like minimum operation time) as well as the prod-

uct constraints obliged by the market (like maximum

price/kWh). Generally, in this step several markets of

same or different kind (like active power or reserve

control markets) could be integrated into the decision

making process in order to optimize benefit. However,

our current work is restricted to a single day-ahead active

power market only.

2) Neighbourhood formation: Given the set of target

products as well as a distance function quantifying

physical distance between DEUs in the grid, agents

start forming neighborhoods which comprise potential

cooperation partners for forming coalitions given the

constraint that their supervised units are located within a

specified range of physical proximity. This second activ-

ity allows unit agents to initially reduce communication

and computation costs in the course of the actual aggre-

gation process. Moreover, by taking the grid topology

into account, coalitions are generally able to provide

grid-sensitive power products within a specified area of

the grid and thus to procure respective system services

like redispatch capacities for congestion management.

3) Coalition formation: As third activity, agents start unit

aggregation by forming coalitions within their afore

defined neighborhoods in order to collectively fulfill

common target products. In case an agent is not able to

find a suitable coalition within its current neighborhood,

it iteratively goes back to the second step and extends

the scope of its neighborhood in order to include more

potential cooperation partners.

4) Payoff division: Finally, after unit aggregation has

finished and a coalition’s product was accepted on the

market (e. g. after clearance on an exchange), agents

enter the last task and divide the payoff received from

common product fulfillment among each other based

on agreed criteria like contributed energy amount or

reliability of procurement. To allow a fair division, the

1508 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



payoff is distributed based on game-theoretic concepts

[16].

V. SCHEDULING OF UNITS IN PLANNING AND OPERATION

The scheduling of energy units within DVPPs can be

regarded as 0-1 multiple-choice combinatorial optimization

problem. In this type of problems, multiple sets or classes of

elements (i. e. feasible operation schedules in our use case) are

given, from which each exactly one element has to be chosen

to form a solution. The goal is to find a solution that minimizes

(or maximizes) a given objective function (e. g. power product

fulfillment).

Many problems solved by multi-agent systems are mod-

eled as distributed constraint optimization problems (DCOP).

According to [17], in a DCOP, a number of independent

agents each control the state of (a subset of) the variables

in the system, with the joint goal of maximizing the global

reward for satisfying constraints. If global constraints affect

a larger subset of agents and the problem should be solved

in a distributed manner though, classical DCOP methods are

not feasible. Hence, in our concept, we use the Combinatorial

Optimization Heuristic for Distributed Agents (COHDA) for

all scheduling aspects throughout the process (see [18] for

details including an overview on and discussion of alternative

solutions for this problem).

A. Intra-DVPP optimization

In the considered use case of day-ahead power provision,

there will be a significant time span between market matching

and product delivery (e. g. 12 hours for the EPEX SPOT in

Germany). This available time span will be used for an internal

optimization within a DVPP prior to product delivery. Here,

updated prognoses and measurements for each DEU can be

utilized in order to tap the full potential of the unit’s flexibility,

which allows for optimizing the unit’s schedule with respect

to accuracy and reliability. For example, the operational state

of a combined heat and power plant in combination with new

measurements of e. g. the water temperature for an attached hot

water storage are used to recalculate the unit’s flexibility (the

modelling of a units’ flexibility is described in Section VI).

With this new information, a rescheduling for the units within

a DVPP is performed: The obligation of a DVPP is given

in the form of a power product that comprises an active

power profile for a defined planning horizon (e. g. the next

24 hours) as a series of constant amounts of active power

(e. g. hourly intervals, as is common for the EPEX SPOT).

The optimization goal in this phase is to find a schedule for

each DEU of the DVPP such that the sum of all schedules

matches the power product as close as possible. However,

each unit agent must be permitted to decide itself which

schedule it contributes. This way, economically or ecologically

rooted soft constraints can be taken into account as secondary

optimization goals while preserving privacy and autonomy of

the participating units. Thus we employ the self-organizing

heuristic COHDA as described in [19], [18] for this task as

follows.

The key concept of COHDA is an asynchronous iterative

approximate best-response behavior, where each unit agent

reacts to updated information from other agents by adapting

its own selected schedule with respect to the power product. In

order to reduce the communication overhead of this distributed

optimization problem, the unit agents are placed in an artificial

communication topology (e. g. a small world topology), such

that each unit agent is connected to a non-empty subset of

other unit agents. To compensate for the resulting non-global

view on the system, each unit agenti collects two distinct sets

of information: on the one hand the believed current configu-

ration γi of the system (that is, the believed current schedules

of all unit agents), and on the other hand the best known

combination γ∗

i of schedules with respect to the power product

it has encountered so far. Recall that an agent initially only

knows its own flexibilities, and the difficulty of the problem

is given by the distributed nature of the system in contrast to

the task of finding a common allocation of schedules. Thus,

the agents coordinate via message exchange. Beginning with

the representative of the DVPP, each unit agenti executes the

following three steps, cf. [18]:

1) (update) When a unit agenti receives information

from one of its neighbors (say, unit agentj), it imports

these information (γj and γ∗

j ) into its own knowledge

base by updating γi and, if better, replacing γ∗

i with γ∗

j .

2) (choose) If γi or γ∗

i has been modified in the previous

step, the agent adapts its own schedule according to

the newly received information, while taking its own

local objectives into account. If it is not able to im-

prove the believed current system configuration γi, the

configuration γ∗

i will be taken instead. The latter causes

unit agenti to revert its current schedule to the one

stored in γ∗

i (note that γ∗

i contains a schedule for each

agent in the system and unit agenti takes its own of

course).

3) (publish) If γi or γ∗

i has been modified in one of the

previous steps, the agent finally publishes its knowledge

base (γi, including its own selected schedule, and γ∗

i )

to its neighbors. Local objectives are not published to

other agents, thus maintaining privacy.

The algorithm terminates when for all agents γ and γ∗ are

identical. At this point, γ∗ is the final solution of the heuristic

and contains exactly one schedule for each unit in the DVPP.

With this information, the unit agent configures its respective

DEU by setting the schedule.

B. Continuous scheduling

Once the internal optimization has finished, operation sched-

ules for each DEU are known to the unit agents. These

schedules can now be transferred to the respective DEU of

each unit agent as set values.1 However, incidents of several

types may have rendered the chosen operation schedules

1Appropriate communication technology choice and information modeling
is not subject of this paper. For example, data can be modelled using state-
of-the-art international standards and protocols like OPC UA and CIM [20].

ASTRID NIESSE ET AL.: CONJOINT DYNAMIC AGGREGATION AND SCHEDULING METHODS 1509



infeasible, like DEU breakdown, updated forecasts or the

operation of the DEU for unforeseen services like system

services. Therefore a rescheduling is needed in those cases,

where the summed deviations of the DVPP’s energy units

enhinder product fulfillment. To detect this behavior, the unit

agents continuously monitor their DEU. If product fulfillment

cannot be guaranteed anymore, rescheduling is triggered. The

scheduling heuristic COHDA described in Section V-A is used

for this application as well, but additional constraints and

optimization criteria have to be considered beside the target

product to be delivered:

• Local DEU contraints: As the DEUs are already in

execution of a given operation schedule, reconfiguration

of the unit should take care of the DEU’s current opera-

tional state. In the algorithmic framework presented here,

surrogate models are used to cover this task: A simulation

model is initialised with the current operational state

of the DEU to deliver feasible sample schedules. Thus

local constraints are covered by each operation schedule

retrieved from this surrogate model.

• Robustness: The schedules generated during internal

optimization may still hold severe uncertainty regarding

their feasibility. With the product delivery period ap-

proaching or even started, robustness of a DEU for a

chosen schedule becomes more important, as a repeated

rescheduling by the agents and resulting reconfiguration

of the DEU may result in suboptimal overall system

performance. Therefore the weighting of robustness may

increases over time depending on the specific facets of

robustness important in the context of DEU scheduling,

i. e. soft constraints within the operation of DEU and

power grid feasibility margins.

• Cost: As long as there is still enough time left until

product delivery, the cost of the schedules is the most

important optimization criterion. A bad robustness value

can be compensated by rescheduling. When product

delivery has started though or not enough time is left

for rescheduling, robustness can outbalance the costs

if product delivery is threatened and thus other costs

(e. g. for balancing energy) would severely cut the DVPP

profits. Therefore the weighting of costs decreases over

time.

The optimization function for continuous rescheduling there-

fore has to be formulated as time-dependent optimization

function, where these factors are convexly combined and given

hard constraints like product fulfillment and other criteria (e. g.

power grid related criteria) are taken as side conditions. The

details on this are subject to current work.

VI. REPRESENTING FLEXIBILITIES WITH SURROGATE

MODELS

Real world scheduling problems often face nonlinear con-

straints. This set of constraints defines the shape of a region

within the search space (a hypercube defined by operation

parameter limits) that contains all feasible solutions. This

feasible region might be arbitrary shaped or discontinuous and

defines the region where to pick feasible solutions from. Sev-

eral techniques for handling constraints during optimization

have been developed. Nevertheless, almost all are concerned

with special cases of non-linear programs or require a priori

knowledge of the problem structure in order to be properly

adapted [21]. A good overview can be found in [22] or [23].

At the same time, support vector machines and related

approaches have been shown to have excellent performance

when trained as classifiers for multiple, especially real world

problems. Tax and Duin developed the support vector domain

description as a one-class support vector classifier that is

capable of modeling the region that is defined by some given

training data [24]. We adapted this concept for integrating

constraints into optimization in a way that allows for efficiently

navigating the feasible region. The basic idea is to construct

a mapping from the whole, unconstrained domain of the

problem (the hypercube) to the feasible region to be able to

automatically repair infeasible solutions during optimization.

In this way, the scheduling problem is transferred into an

unconstrained one by mapping any arbitrary solution onto a

nearby feasible one.

Information about the flexibility of a DEU, i. e. the capabil-

ity to alter energy production or consumption, is indispensable

for coordinating processes within a DVPP. Planning for a

product specific adaption of operations demands for a detailed

model of a unit’s scope of action. Taking into account all

feasible alterations of operation, flexibility can be represented

as the set of realizable (operable without violating any con-

straint) schedules. Unfortunately, a full assessment of this set

is in general intractable. Depending on the time resolution

of the schedule and possible operational settings of a unit, the

number of theoretically realizable schedules can be in the order

of some 10100. Each unit has to obey individual technical,

economic or user defined constraints in their operation that

restrict the set of feasible schedules resulting in an individually

shaped feasible region. Thus, the search space that defines

feasible solutions of each unit forms an individually shaped

feasible region. A mathematical model of the flexibility has to

be derived repeatedly on demand as it depends on the current

setting (e. g. operation state) and on recent forecasts (e. g. on

thermal demand). Furthermore, because a DVPP continuously

re-organizes in our approach, a mathematical optimization

model for a DVPP cannot be determined statically in advance.

Thus, with a newly formed DVPP the model for scheduling

has to be re-built according to the participating units and

their individual current flexibility. Hence, we use surrogate

models for a unit’s flexibility as proposed in [25]. The core

of the model for the set of feasible schedules is a one-class

support vector classifier trained with a set of operable example

schedules. This flexibility model works as follows: Given a set

of sample schedules, a description of the inherent structure

of the feasible region of a unit is derived. After mapping

the data to a high dimensional feature space by means of an

appropriate kernel, the smallest enclosing ball in this feature

space is determined. When mapping back this ball to data

space, the pre-image of the ball forms a set of contours (not
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necessarily connected) enclosing the given data sample (in our

case: the feasible schedules of the respective DEU). The result

of this procedure is a decision function that in general allows

deciding on an arbitrary data point whether it belongs to the

same region that contains the other data or not. In our use

case, it allows testing a schedule wether it can be operated by

the DEU or not.

But, for a controlled construction of solutions we have to

go one step further, as we want to have a means for a goal-

oriented search that allows us to systemetically find feasible

schedules. In this way, we need a means that guides any

algorithm where in the search space to look for feasible sched-

ules. The advantage of our model is that it allows to generate

a decoder that transforms the problem of distributed active

power planning into an unconstrained one [26]. In general,

a decoder is a constraint handling technique that imposes a

relationship between feasibility and decoder solutions in order

to give an algorithm hints on how to construct a feasible

solution [23]. The flexibility of a unit is represented as pre-

image of a high-dimensional ball. This representation has some

advantageous properties. Although the pre-image might be

some arbitrary shaped non-continuous blob in R
d, the high-

dimensional representation is still a ball and thus geometrically

easier to handle. The relation is as follows: If a schedule can

be operated without violating any constraint, it lies inside the

feasible region. Thus, it is inside the pre-image (that represents

the feasible region) of the ball and thus its image in the high-

dimensional representation lies inside the ball. An infeasible

schedule lies outside the feasible region and thus its image lies

outside the ball. Additionally, we know some relations: the

center of the ball, the distance of the image from the center

and the radius of the ball. Hence, we can move the image of

an infeasible schedule along the difference vector towards the

center until it touches the ball. Finally, we calculate the pre-

image of the moved image and get a schedule at the boundary

of the feasible region: a repaired schedule that is now feasible.

We do not need an explicit mathematical description of the

feasible region or of the constraints to do this. Working with

this decoder concept comprises two successive stages:

1) A model/decoder training phase: During the training

phase (flexibility assessment) the decoder is build out of

an set of example schedules derived from a simulation

model of the unit.

2) A successive planning phase: Once the model is built, it

can be (re-)used for assessing the feasibility of arbitrary

schedules and for systematically generating feasible

schedules with the decoder.

The latter is the main use case for the flexibility model:

Whenever a prospective schedule is generated as a candidate

solution to a specific unit, the decoder is used to convert

this schedule into a similar schedule that is guaranteed to be

operable by this DEU. The feasible version is used for schedul-

ing. At the same time, performance indicators characterizing

individual schedules with respect to different optimization

goals are automatically preserved with this method [27]. Thus,

after mapping a schedule (even with wrong or no associated

performance indicators) to a feasible one, evaluation with

respect to multiple criteria is possible. For distributed problem

solving, the decoder can serve as a substitute for an often

(particularly with regard to a fully automated generation in

dynamic environments) hardly derivable mathematical model

of a unit. The flexibility model automatically derives a means

for generating feasible solutions from an unknown (to the

agent) technical model. Hence, in our use case the flexibility

model allows the agent for always working with operable

schedules and thus with feasible solutions during coalition

formation and scheduling without a need for a unit specific

agent implementation.

VII. AGENT MODEL

In order to manage the repeatedly executed tasks of the

four phases (DVPP aggregation, market interaction, intra-

DVPP optimization, and continuous scheduling) the automaton

depicted in Fig. 3 is guiding each agent through the process.

Once started, the agent first executes the flexibility assessment

task by querying the current state of the controlled unit and

simulating possible flexibilities with its parameterization. The

flexibility model and the decoder are built and provided for

reuse in successive tasks. If the agent is not yet part of a DVPP,

the agent takes part in the aggregation process that as a result

assigns the agent to a newly formed DVPP. After forming the

DVPP each agent participates in a continuous optimization

process that aims at assigning a schedule to each agent’s unit

such that correct delivery of the product is ensured as reliable

and at the same time as efficiently as possible. To do this the

described optimization process is executed. The first execution

is started at latest directly before product delivery. In case

of an event that invalidates the current flexibility model due

to changed assumptions or technical problems, the flexibility

assessment has to be started again. With this new flexibility

model, the optimization process may then be executed for

rescheduling as a reaction to the event. The rescheduling may

be triggered without a new flexibility assessment in case it is

triggered due to the invalidation of another agent’s flexibility

model. After product delivery the DVPP’s existence comes to

an end and the cycle starts again.

VIII. FEASIBILITY STUDY

A. Simulation Environment

The purpose of distributed control concepts as described in

this work is to realize an agent-based control of distributed

energy units according to a current market situation, the

current energy unit’s state and the power grid’s operational

state. As a consequence, purpose of the evaluation system

is to evaluate the effect of these distributed control concepts

on the energy units and (for some applications) the power

grid. Therefore a Smart Grid simulation has to be performed,

following requirements regarding the reuse of existing models,

a convenient and easy to reuse scenario specification, a well-

defined API to real-world components and a synchronization

concept and implementation between the multi-agent system
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Fig. 4. Evaluation system with unit simulation using mosaik, multi-agent
system for control of the VPP and synchronisation agent.

and the Smart Grid simulation. We use mosaik [28] as Smart

Grid simulation framework that was built to meet these

requirements. The chosen Smart Grid simulation framework

has to be coupled with the distributed control technology

framework chosen. In our case, we chose JADE [29] with

some modifications.2

In Fig. 4 an overview on the evaluation system is given.

Smart Grid simulation and agent-based control are completely

separated. On the left hand side, the Smart Grid simulation

with all simulation models for DEU is shown. On the right

hand side, the MAS is shown. Within this part of the MAS, the

agent-based control of the simulated real-world components

(that is DEU in the use case chosen here) is realized. During

simulation, the unit agents have to access the simulated

energy units to set schedules and retrieve current measurement

2As JADE schedules events in real-time, parts of the agent framework JADE
had to be rewritten to realize this synchronization, thus allowing to run JADE
as a MAS-simulation.

values. This access is realized using a synchronization bridge

(depicted in in the middle of Fig. 4) offering a JADE interface.

Besides data transfer, the bridge handles the sychronisation

between Smart Grid simulation and MAS. The agents cannot

distinguish being run in a simulation environment or in a

real-world application. Within mosaik, the bridge allows to

handle the MAS as an additional simulation component. In

our system, dummy market data serve as input for the market

agent to define products and realize the market matching once

the order book is closed. The output data of both Smart Grid

simulation and multi-agent system are stored in two HDF5-

databases.

B. Experimental setup and results

To give an illustrative example for the integrated process

chain within a feasibility study, we setup a scenario with

38 combined heat and power plants combined with thermal

storage connected to households in a low-voltage grid. As

product to be realized by the DVPPs we defined a product

of 25 kWh from 2 p.m. to 3 p.m. on January 2nd, 2013, i. e.

15 min. time intervals 56 to 59 on day 1. The simulation

was run from January 1st, 2013 (day 0) to January 2nd, 2013

(day 1) to cover the day-ahead market use case defined in

Section III. The Smart Grid simulation was run with a stepsize

of one minute, taking into account the weather conditions on

the chosen simulation days.

We expected the following phases when running the MAS in

the coupled simulation with mosaik: (1) Day-ahead flexibility

assessment for all units and DVPP formation for defined

product for day 1, and (2) Intra-day pre-delivery flexibility

assessment for DVPP units and rescheduling of units for day 1.

We started the process of DVPP setup at 0 a.m. on day 0.

Reassessment of flexibilities and rescheduling was started at

0 a.m. at day 1. In this setup, grid topology is reflected within

DVPP setup as defined by the neighbourhoods (cf. Section IV).

In Fig. 5 the sample schedules for the initial flexibility

assessment are shown for one energy unit (unit1). For each

sample schedule, the mean power value is plotted for all 96

operation schedule intervals. The distribution of power values

over time is quite uniform. In the surrogate model trained

with these samples (cf. Section VI), very different operation

schedules can be found for the product horizon starting at

interval 56 (2 p.m.). During DVPP formation, energy units

aggregate to coalitions if their potential contributions fit the

product needed (cf. Section IV). In the example given here

units should aggregate to deliver a 25 kWh hourly product.

For reasons of clarity, we only illustrate the product setup

of one DVPP from this scenario. For the example DVPP

chosen, 5 unit agents jointly deliver the defined product. On

the left hand side of Fig. 6 the active power contributions of

all energy units within the DVPP are shown as stacked chart

over time for the product horizon (2 – 3 p.m.). The energy that

would be delivered by the DVPP following these schedules is

depicted on the right hand side. The product target of 25 kWh

is not reached due to the tolerance settings within coalition
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Fig. 6. Cluster schedule and product coverage after DVPP setup

formation; these can be adapted individually for each product.3

A second flexibility assessment was triggered at 0 p.m. on

day 1. Fig. 7 shows the samples taken from the simulation

of the unit at that simulation time. If compared with the

initial samples (Fig. 5), a much darker region can be detected

at the product horizon (time intervals 56 – 59). Obviously,

flexibilities in unit operation have narrowed down (e. g. due to

the current capacity of the thermal storage or updated weather

prognoses). The surrogate model trained with these samples

will not produce schedules with power values lower than

3000 W in the chosen time horizon. We now take a closer look

on the results of the planning phase using the surrogate models

trained by the sample schedules from the second flexibility

assessment.

In Fig. 8 the schedules after rescheduling using COHDA

(cf. Section V-A) are shown. As can be seen, the product is

now fulfilled better (23.09 kWh). One reason for this might be

the changed surrogate model of unit1: In the original plan,

this unit has been scheduled with a contribution of 1.3 kW

3The evaluation of an optimal setting of these margins is part of a later
evaluation of the overall system.
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Fig. 8. Cluster schedule and product coverage after rescheduling

for time interval 59 (2:45 p.m.). This active power range

cannot be retrieved from the surrogate model trained with

the samples shown in Fig. 7, as an active power value lower

3000 W is not within the set of feasible schedules. Therefore,

a new solution has been found by COHDA following both the

updated flexibilities (modelled within the surrogate models of

the energy units) and the target product tolerance margins.

IX. CONCLUSION

In this paper we presented an agent-based control method

for dynamic virtual power plants self-adapting their unit

set and operational plan to be able to trade products on a

power market. The three coordination steps of aggregation,

schedule optimization, and continuous scheduling for DVPP

control are integrated into the behavior of unit agents. These

agents interact with each other and with the power market.

Aggregation as well as scheduling of DVPPs is based on

self-organization methods to achieve adaptivity to a changing

set of units and new products traded on the market. So,

DVPPs are self-coordinating, self-optimizing, and – within

certain limits – self-healing. A cross-sectional technology

for representation of the units’ flexibilities is provided by a
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surrogate model allowing to integrate new types of units easily

into the coordination mechanism of DVPPs.

A simulation-based demonstrative example of the interac-

tion of the coordination steps of a DVPP has been given in

this contribution. Based on the current state of knowledge,

DVPPs are a very promising approach to exploit flexibilities

of decentralized units in a future power grid to support the inte-

gration of renewable energy resources. More and particularly

more complex scenarios have to be studied to evaluate the

performance, stability and dynamics of this control method.

This will be a significant goal in our ongoing project cluster

Smart Nord.
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