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Abstract—This paper focuses on analyzing a Spatial Pooler
(SP) of Hierarchical Temporal Memory (HTM) ability for facil-
itating object classification in noisy video streams. In particular,
we seek to determine whether employing SP as a component of
the video system increases overall robustness to noise. We have
implemented our own version of HTM and applied it to object
recognition tasks under various testing conditions. The system
is composed of a video preprocessing block, a dimensionality
reduction section which contains SP, a histograms collecting
module and SVM classifier.

Our experiments involve assessing performance of two differ-
ent system setups (i.e. a version featuring SP and one without
it) under various noise conditions with 32–frame video files. In
order to make tests fair and repeatable the videos of several
3–D geometric shapes were artificially generated. Subsequently,
Gaussian noise of a different intensity was introduced to the
videos making them more indistinct. Such an approach mimics
real–life scenarios where the system is taught ideal objects and
then faces in its normal working conditions the challenge of
detecting noisy ones.

The results of the experiments reveal the superiority of
the solution featuring Spatial Pooler over the one without it.
Furthermore, the system with SP performed better also in the
experiment without a noise component introduced and achieved
a mean F1–score of 0.91 in ten trials.

I. INTRODUCTION

D
ESPITE the huge technological growth witnessed nowa-

days, there are still no autonomous machines available

which would be capable of operating in the real world. Such

machines would take over most of our tedious everyday duties

and clear the way for a breakthrough in Artificial Intelligence.

However, such robots need to be able to process inputs in

real time, learn, generalize and react to events. This requires

building an appropriate processing system which has human–

like capabilities [1] [2].

A mammalian brain is an example of such a system which

evolved over millions of years. Despite its apparent complexity

there is only one algorithm [3] within the brain which governs

the body functions. This allows for scalability of the solutions

based on the algorithm since more complex systems may be

built on a top of the simpler ones just by duplication of the

basic structure.

The human brain as a whole has not been completely ex-

plored yet, making its artificial implementation and verification

a very hard task. However, there are initiatives [4] which have

taken up the challenge of simulating and modeling a brain as

we know it today. Rather than model the brain, the authors

of this paper have adopted a slightly different approach of

gradually introducing selected components of HTM to the

video processing system with the intention of enhancing its

performance. By doing so we aim to develop a complete

system working on the principles of the human brain as they

were presented in [3][5] with our modifications making the

algorithm suitable for hardware implementation.

Consequently, this paper attempts to take a step forward

in examining the feasibility of using HTM for classifying

objects in noisy video streams. The authors state the following

hypothesis: employing Spatial Pooler in the video processing

flow will improve the object classification ratio due to its

beneficial reduction property of mapping to Sparse Distributed

Representation (SDR). It is verified through a series of exper-

iments.

The rest of the paper is organized as follows. Sections I-A

and I-B provide the background and related work of object

classification in video streams and Hierarchical Temporal

Memory, respectively. The custom designed system used for

the experiments is presented in Section II. Section III provides

the results of the experiments. Finally, the conclusions of our

research are presented in Section IV.

A. Object classification in video streams

Most state–of–the–art information extraction systems con-

sist of the following sections: preprocessing, feature extraction,

dimensionality reduction and classifier or ensemble of classi-

fiers (Fig. 1). Their construction requires expertise knowledge

as well as familiarity with the data that will be processed

[6][7].
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Fig. 1. Architecture of a video processing system

Usually, systems for object classification in video streams

are also designed according this scheme. Consequently, the

proper choice of the operations which constitute all the men-

tioned stages of the system is important and decides about the

classification result [8]. One of the most challenging stages

is feature extraction, which substantially affects the overall

performance of the system.

There are also systems which take advantage of the spatial–

temporal [5] profile of the data [1][9]. They are closer to the

concept of the solution presented in this paper, which may be

considered a hybrid approach since it features components of

both schemes.

B. Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) replicates the struc-

tural and algorithmic properties of the neocortex. It can be

regarded as a memory system which is not programmed,

but trained through exposing it to data flow. The process

of training is similar to the way humans learn which, in its

essence, is about finding latent causes in the acquired content.

At the beginning, the HTM has no knowledge of the data

stream causes it examines, but through a learning process it

explores the causes and captures them in its structure. The

training is considered completed when all the latent causes

of data are captured and stable. The detailed presentation of

HTM is provided in [5][10][11].

HTM is composed of two main parts, namely Spatial and

Temporal Pooler. This paper focuses on Spatial Pooler (SP),

aka Pattern Memory, which is employed in the processing flow

of the system. Is contains columns with synapses connected

to the input data [5]. The main role of SP in HTM is finding

spatial patterns in the input data. It may be decomposed into

three stages:

• Overlap calculation,

• Inhibition,

• Learning

The first two stages are very computationally demanding but

can be parallelized, therefore the authors decided to implement

them on GPU in OpenCL. The learning stage is implemented

on CPU in Python. The detailed description of algorithms is

provided in [5].

The overlap section computes col.overlap for every column

in SP structure i.e. a number of active and connected synapses.

Fig. 2. Architecture of the implemented system

If the number is larger than col.min_overlap then it is boosted

and passed on to the inhibition section.

The inhibition stage implements a winner–takes–all proce-

dure where for each column a decision is made as to whether

it belongs to a range of n columns of the highest values.

II. SYSTEM DESCRIPTION

The implemented HTM version [12] follows description

from [5], with the exception of synapses bias implementation

being replaced with random connections. Its main purpose

however is to emphasize the algorithm parallelism and to allow

progressively replace parts of it with GPU–accelerated (and in

the future FPGA–accelerated) fragments written in OpenCL.

The system (Fig. 2) is highly configurable, with numerous

parameters responsible for the core HTM’s structure, the

encoder behavior, statistics rendering, etc. The configuration

is stored in a file written in JSON format, which allows it

to maintain its readability while providing clear structure. In

addition to the core module, a set of supporting modules has

been developed. Most of them are used for feeding video data

to the core module, and receiving and analyzing the results.

The complete processing flow of the system is presented in

Fig. 3. The data is fed into the system in a frame–by–frame

manner. In the first step the original frame is reduced and bina-

rized using OpenCV procedures. During the encoding process,

the original video frame is converted to a smaller binary image.

Preliminary tests showed that reducing a 960x540 image by a

factor of 16 (producing 60x33 images) has a low impact on

the end results while significantly shortening the processing

time (Fig. 4). After reduction, the color image is converted

to grayscale, which later is turned into a binary one using

adaptive thresholding (using a potentially different threshold

value for each small image region).

Those operations constitute the encoding which allows the

generation of input data for the SP processing stage. There-
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Fig. 3. Block diagram of the proposed approach

after, the data is mapped to SDR with SP and may be passed on

to TP. Since our current work focuses on finding the optimal

SP parameters values we do not use TP in this particular

application, but the system in general has such capability. In

the next step, histograms of consecutive processed frames are

built on a per–video basis. The histograms are used as the

input data for the SVM classifier which comes next.

There are two different working modes of the system,

namely learning and testing modes. The system is trained in

the learning mode with 80% of available data and then it is

tested with the remaining 20% of the data in the testing mode.

III. EXPERIMENTS AND THE DISCUSSION

A series of experiments (details of which are provided in

Tab. I and Tab. II) was conducted to validate the hypothesis

stated in the introduction of the paper. They allow a compari-

son of the performance of the system featuring Spatial Pooler

in the processing flow with the one lacking it.

The challenging part involved generation of sample videos

for testing (available from [13]. The videos had to meet a series

of requirements such as object location, camera location and

object–camera distance. Consequently, a dedicated application

was used to generate the videos (i.e. Blender [14]). Blender

provides Python API, which was used to automate and ran-

TABLE I
VIDEO PARAMETERS

Parameter Value

Size of a single video frame 960x540
Reduction level 16
Frame size after reduction 60x33
No. of frames in a single video 32

Object classes
cone, cube, cylinder, monkey,
sphere, torus

No. of classes 6

Total no. of videos
all 6000
training 4800
testing 1200

Videos per class
all 1000
training 800
testing 200

Videos per trial
all 100
training 80
testing 20

Fig. 4. Sample frames of different shapes and noise levels

domize the video generation. Each video contains a single,

centered shape and a randomly positioned light source which

brightness is picked from predefined range. During the course

of a video the camera randomly changes position. Since noise

addition at the runtime proved to be a very time consuming

process, a separate script introducing noise to a large set of

generated videos was created. Embedding noise also ensures

equal conditions for all the experiments and test setups.

The F1–score is used as a quality evaluation of the experi-

ments’ results presented in this paper.

Experiments conducted for higher noise levels than pre-

sented in Tab. III resulted in an unacceptably low F1–score

(below 0.75). Therefore, the authors decided not to include

the results of those experiments in the table.

It is worth noting there there was a huge difference in

the calculation time of a single experiment across setups, see

Tab. IV. This is the result of an HTM algorithm complexity,

TABLE II
SP PARAMETERS

Parameter Value

No. of columns 2048
No. of synapses per column 64
Perm value increment 0.1
Perm value decrement 0.1
Min overlap 8
Winners set size 40
Initial perm value 0.21
Initial inhibition radius 80

MACIEJ WIELGOSZ ET AL.: USING SPATIAL POOLER OF HIERARCHICAL TEMPORAL MEMORY 273



TABLE III
EXPERIMENTS RESULTS FOR DIFFERENT NOISE LEVELS

F1–score : mean and variance (10 repetitions)
Noise level (σ) SVM SVM + SP

0 0.82 (0.001) 0.91 (0.001)
4.25 0.81 (0.001) 0.89 (0.001)
8.5 0.78 (0.001) 0.88 (0.003)

TABLE IV
EXECUTION TIME OF A SINGLE EXPERIMENT FOR DIFFERENT SETUPS

Setup Time [hours]

SVM 0.23
SVM + SP 28.5

object–oriented programming approach and high level script-

ing language used in implementation. Code optimization and

introducing more hardware–accelerated fragments should im-

prove execution time. The tests were run on Intel(R) Core(TM)

i5–4210M CPU @ 2.60GHz, and Nvidia GeForce GT 730M

(selected sections of SP). Each experiment consisted of 10

trials.
According to the authors knowledge it is hard to find papers

which directly correspond to the research conducted in this

work (i.e. video classification in noisy video streams). Never-

theless, we examined the following papers : [15], [16], [17]

which presents results of video classification using UCF-101

dataset. The best systems presented in those papers are based

on various architectures of Convolutional Neural Networks

(CNNs) and achieve accuracy of 80% and more. It is worth

emphasising that despite similar performance in terms of the

quality results our test setup is different mostly in a process

of the video generation.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents the preliminary experimental results

of using an HTM–based system for object classification in

video streams. The authors showed that using SP in the video

processing flow improves the object classification ratio by

approx. 10%. In future work, the authors are going to modify

the preprocessing stage of the video processing flow and

introduce TP. The authors are going to implement the most

computationally–exhaustive routines in OpenCL and deploy

the system on platforms equipped with GPU– or FPGA–based

acceleration. This will enable conduction of experiments with

video of a lower image reduction ratio.

TABLE V
EXAMPLE CONFUSION MATRIX FOR SVM–ONLY SETUP AND GAUSSIAN

NOISE WITH σ = 8.5

Predicted classes

cone cube cylinder monkey sphere torus

cone 19 0 0 0 0 1
cube 0 10 8 0 2 0
cylinder 0 3 16 0 1 0
monkey 0 1 2 14 2 1
sphere 0 3 3 0 13 1
torus 0 1 0 0 0 19
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