
Partitioning the Data Domain of Combinatorial
Problems for Sequential Optimization

Christian Hinrichs, Jörg Bremer, Sönke Martens, Michael Sonnenschein
Department of Computing Science

University of Oldenburg

26129 Oldenburg, Germany

<first name>.<last name>@uni-oldenburg.de

Abstract—Following the long-term goal of substituting con-
ventional power generation with cleaner energy will lead to an
integration of a large share of small energy generation units
imposing large problem sizes for coordination. The expected huge
number of entities leads to a need for new techniques reducing
the computational effort for coordination. Predictive scheduling
is a frequent task in energy grid control. For a number of
energy resources, schedules have to be found that fulfill several
objectives at the same time. Considering day-ahead scenarios
with 96-dimensional schedules imposes additional challenges
to this already hard combinatorial problem. We explore the
effects of reducing complexity by partitioning the data domain
of the optimization problem for a sequential approach that
integrates energy models for constraint handling directly into
the optimization process. We explore the effects of different
partitioning schemes and evaluate the trade-off between accuracy
and effort with several simulation studies.

I. INTRODUCTION

D
ESPITE being environmentally friendly and sustainable,

the increasing amount of renewable electricity generation

has a major drawback. In contrast to conventional power

plants, the generation from e. g. solar and wind power can

neither be predicted with high accuracy nor scheduled pre-

cisely. Furthermore, as storage of electrical energy is a rather

difficult and expensive task, balancing supply and demand in

the grid in real-time is one of the most important functions of

power system control centers. Thus, to incorporate renewables

accordingly, methods have to be established that can compen-

sate for the missing flexibility of those energy sources. For

instance, controlling flexible loads to use electrical power in

times of high availability (i. e. high wind or solar radiation)

can help using renewable power more efficiently [1].
From an algorithmic perspective, the task of scheduling

energy units can be seen as combinatorial optimization prob-

lem: For each unit (i. e. controllable loads and generators),

an optimal schedule has to be found such that for every

time interval of a predefined planning horizon, a specific

amount of electrical power (positive or negative) is assigned.

A combination of schedules is optimal if the aggregated power

equals a target profile that is given by the use case. For

example, given the inverse of a predicted feed-in time series

for wind and photovoltaic power plants as target profile, an

optimal schedule assignment for the controllable energy units

would lead to a perfect balancing of supply and demand in the

considered system at each interval of the prediction horizon.

Another use case is the operation of a virtual power plant

(VPP): Given a target power profile that is to be offered in an

energy market, the members of the VPP must collaborate in

such a way that the VPP as a whole will produce the target

profile. From the outside perspective, no difference between a

VPP and a classical power plant would be evident [1].

However, the schedule optimization task becomes hard to

solve in the presence of device-specific restrictions. Many

flexible generators and loads are controllable in principle, but

at the same time have to obey specific individual constraints.

For instance, a cogeneration plant (e. g. a combined heat and

power plant, CHP) produces thermal and electrical power

simultaneously. As the generation of those two forms of

power are strictly coupled within the unit and the use of the

heat is subject to further restrictions such as the size of an

attached thermal buffer storage, the electrical generation is

severly confined as well [2], [3]. Due to such constraints, many

established optimization algorithms cannot be applied to this

task. For instance, meta-heuristics like evolutionary algorithms

or simulated annealing are not able to cope with constraints

per se and would have to be tailored specifically for the actual

use case and the involved energy units.

In [4], a method has been introduced that is able to trans-

form a problem with restrictions into a restriction-free repre-

sentation using a machine learning approach. This so-called

support vector decoder model allows generic optimization

algorithms to operate in a restriction-free representation of the

constrained search space of the original optimization problem.

The method has been successfully applied to the schedule

optimization problem [3]. In this context, the influence of the

length of the planning horizon on solution quality became

apparent: Usually, the method is applied to representations

of the planning horizon as a whole by interpreting feasible

schedules of energy units as elements to the combinatorial

problem. However, the longer the planning horizon (and the

schedules, consequently), the lower the solution quality of the

employed optimization algorithms. At first glance, this may

seem like an inherent restriction of the problem to solve. But

interestingly, preliminary experiments indicated a potentially

increasing solution quality when the optimization algorithm

is applied in a successive manner to sequential partitions of

the planning horizon. Thus, the objective of this paper is to

explore the potential benefit of partitioning the search space

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 551–559

DOI: 10.15439/2016F19

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 551

of the given combinatorial problem in the data domain in

combination with sequential optimization of the individual

data partitions.

In Section II, the motivating optimization problem as well

as the support vector decoder model are briefly recapped from

previous works. Following, Section III first revisits relevant

related work in the field of high-dimensionality optimization

strategies before describing the introduced concept of data

partitions for the considered combinatorial problem in more

detail. Section IV then evaluates the approach by employing

a simulation study in the aforementioned application domain.

Finally, Section V concludes the paper.

II. METHODICAL BACKGROUND

We start with some preliminary definitions. First, let U
be the set of DER units in the VPP and ZU be the set of

operational states of unit U . We regard the schedule of an

energy unit as a vector p = (p1, . . . , pd) ∈ R
d of mean power

pi generated (or consumed) during the ith time interval. The

starting time and the width of a time interval (today usually

15 minutes) are defined separately and have no effect on

this representation. For the used support vector decoder it is

advantageous to use schedules with scaled power values [5].

Scaling is done according to respective minimum (pmin) and

maximum (pmax) nominal active power output (or input):

ρ : Rd → X ⊂ [0, 1]d

p 7→ x = ρ(p),with xi =
pi − pmin

pmax − pmin
;

(1)

For this paper we go with the example of predictive scheduling

for active power planning in day-ahead scenarios (not neces-

sarily 24 hours but for some given future period).

One of the crucial challenges in operating a VPP arises

from the complexity of the scheduling task due to the large

amount of (small) energy units in the distribution grid [6]. In

the following, we consider predictive scheduling, where the

goal is to select exactly one schedule xi for each energy unit

Ui from a search space of feasible schedules with respect to a

future planning horizon, such that a global objective function

(e. g. a target power profile for the VPP) is optimized by the

sum of individual contributions [7]. A basic formulation of the

scheduling problem is given by

δ

(

m
∑

i=1

x, ζ

)

→ min (2)

such that

xi ∈ F
(Ui) ∀Ui ∈ U . (3)

In equation (2) δ denotes an (in general) arbitrary distance

measure for evaluating the difference between the aggregated

schedule of the group and the desired target schedule ζ.

W.l.o.g., in this contribution we use the Euclidean distance

‖ · ‖2. To each energy unit Ui exactly one schedule xi has

to be assigned. The desired target schedule is given by ζ.

F (Ui) denotes the individual set of feasible schedules that

are operable for unit Ui without violating any (technical)

constraint. Solving this problem without unit independent

constraint handling leads to specific implementations that are

not suitable for handling changes in VPP composition or unit

setup without having changes in the implementation of the

scheduling algorithm [8].

In [9] a so called support vector decoder has been intro-

duced. Basically, a decoder is a constraint handling technique

that gives an algorithm hints on where to look for feasible

solutions. It imposes a relationship between a decoder solution

and a feasible solution and gives instructions on how to

construct a feasible solution [10]. For example, [11] proposed

a homomorphous mapping between an n-dimensional hyper

cube and the feasible region in order to transform the problem

into an topological equivalent one that is easier to handle. In

order to be able to derive such a decoder mapping automat-

ically from any given energy unit model, [9] developed an

approach based on a support vector model [5]. We will briefly

describe this method.

The basic idea is to start with a set X = {xi}n of feasible

example schedules derived from the simulation model of an

energy unit and use this sample as a stencil for the region (the

sub-space in the space of all schedules) that contains only

feasible schedules. The set X can be easily generated after a

sampling method from [12]. The schedule sample is then used

as a training set for a support vector based machine learning

approach [13] that derives a geometrical description of the

sub-space that contains the given data (in our case: the feasible

schedules). Given a set of data samples, the inherent structure

of the scope of action of a unit where the data resides in

can be derived as follows: After mapping the data to a high

dimensional feature space by means of an appropriate kernel,

the smallest enclosing ball in this feature space is determined.

When mapping back this ball to data space, it forms a set of

contours (not necessarily connected) enclosing the given data

sample. An in-depth discussion can be found e. g. in [13].

At this point, the set of alternatively feasible schedules of a

unit is represented as pre-image of a high-dimensional ball S .

Figure 1 shows the situation. This representation has some

advantageous properties. Although the pre-image might be

some arbitrary shaped non-continuous blob in R
d, the high-

dimensional representation is still a ball and thus geometrically

easier to handle (right hand side of figure 1). The relation

is as follows: If a schedule is feasible, i.e. can be operated

by the unit without violating any technical constraint, it lies

inside the feasible region (grey area on the left hand side

in figure 1). Thus, the schedule is inside the pre-image (that

represents the feasible region) of the ball and thus its image

in the high-dimensional representation lies inside the ball. An

infeasible schedule (e. g. x in Fig. 1) lies outside the feasible

region and thus its image Ψ̂x lies outside the ball. But we

know some relations: the center of the ball, the distance of

the image from the center and the radius of the ball. Hence,

we can move the image of an infeasible schedule along the

difference vector towards the center until it touches the ball.

Finally, we calculate the pre-image of the moved image Ψ̃x

and get a schedule at the boundary of the feasible region: a

552 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

H(ℓ)
R

d

x

Ψ̂x

Ψ̃x

x
∗

RS

Fig. 1. General support vector model and decoder scheme for solution repair
and constraint handling.

repaired schedule x∗ that is now feasible. We do not need a

mathematical description of the original feasible region or of

the constraints to do this. The decoder that does the trick is

derived directly from the training set X generated from the

respective simulation model. More sophisticated variants of

transformation are e. g. given in [4]. For a detailed description

of the support vector decoder approach we refer to [4].

Formally, we have a mapping (the decoder γ)

γ : [0, 1]d → F[0,1] ⊆ [0, 1]d

x 7→ γ(x)
(4)

that transforms any given (maybe in-feasible) schedule into a

feasible one. Thus, we are able to transform the scheduling

problem given Eq. (2) into an unconstrained formulation.

With these preliminaries in constraint handling we can now

reformulate our optimization problem as

δ

(

m
∑

i=1

ρ−1
i ◦ γ(xi), ζ

)

→ min, (5)

where γi is the decoder function of unit i that produces

feasible, scaled schedules from x ∈ [0, 1]d and σ−1
i scales

them unit specific entrywise to correct active power values

(inverse to Eq. (1)) resulting in schedules that are operable by

that unit. Please note, that this is a constraint free formulation.

With this problem formulation, many standard algorithms for

optimization can be easily adapted as there are no constraints

(apart from a simple box constraint x ∈ [0, 1]d) to be handled

and no domain specific implementation (regarding the energy

units and their operation schedules) has to be integrated.

Equation (5) is used as a surrogate objective to find the

solution to the constrained optimization problem equation (2).

Using a decoder fairly eases the implementation of a solver

because no complex constraints have to be considered. On

the other hand, such a decoder may introduce additional com-

plexity into the optimization problem by the transformation.

For this reason, we scrutinized the fitness landscapes of both

problems (untransformed and transformed) to gain insight

into the problem structure with means from standard fitness

landscape analysis [14]. Indeed, our findings indicate a slightly

growing in complexity by an increased ruggedness with a

growing number of local minima [15]. But, this situation can

be easily countered by using a heuristics that copes well with

rugged non-linear problems like Simulated Annealing (SA).

Simulated Annealing [16] is an established Markov Chain

Monte Carlo Method (MCMC) for non-linear optimization. It

mimics a physical cooling process. In general, MCMC meth-

ods are an effective tool for statistical sampling applied to op-

timization problems [17]. The basic idea is a Markov Process

that samples a target probability distribution π(x) = 1
z e

−E(x)

with z as a problem specific normalization parameter and E

measuring the error of the optimization objective. Originally,

the method has been mainly applied to physical problems

finding a minimum energy state and thus E is sometimes still

written HamiltonianH, e.g. in [18]. We will use the term E. In

this process a new state σt+1 is generated from σt by drawing

from a proposal transition distribution Q(σt+1|σt) [19], [20].

The new state is accepted with probability

A(σt → σt+1) = min

(

1,
π(σt+1)Q(σt+1|σt)

π(σt)Q(σt|σt+1)

)

. (6)

The proposal distribution Q is a free parameter and must

be adjusted to the individual problem at hand. Starting from a

random initial state σ0, the process needs a while to reach

equilibrium and independence from σ0. After this burn-in

phase the samples represent the target distribution π.

In systems with deep local minima the process can be

trapped without escape in reasonable time. This waiting time

dilemma [21] is due to a stringent requirement for equilibrium.

To escape, the process must generate subsequent states with

higher energy and the probability for such a move declines

roughly exponentially with the energy differences that has to

be overcome. Thus, the expected waiting time for such escape

grows also exponentially. For high-dimensional problems like

the one that we scrutinize here, this problem is even more

prevalent [21]. Several techniques have been proposed to

overcome the problem of getting trapped, e.g. [22], [21], [23];

one is the concept of Simulated Annealing (SA).

SA introduces a variable temperature T into the target

distribution: π(x) = 1
z e

−E(x)/T . The effect is that the Markov

Chain may escape local minima easier at a higher temperature.

The general idea of Simulated Annealing is to interpret the

fitness landscape of an optimization problem as a thermody-

namic system with the objective function E(x) denoting the

error interpreted as the energy level of a proposed solution

x. Initially, the system is at a high temperature. During the

Markov process, the system is gradually cooled down to the

ground state with the global energy minimum.

Algorithm 1 shows the basic flow within our SA with inte-

grated decoder. This integration has first been proposed in [15].

By mimicking a cooling process, temporarily worse solutions

are allowed – depending on temperature and difference in

solution quality – in order to escape local minima. In our

approach, a solution is described by two matrices Xij and

Mij denoting for each energy unit i and for each time interval

CHRISTIAN HINRICHS ET AL.: PARTITIONING THE DATA DOMAIN OF COMBINATORIAL PROBLEMS 553

j of the schedule a scaled active power value in [0, 1]. In

many objective scenarios, indicator values that describe the

schedule with respect to different objectives might additionally

be prevalent. For demonstration purposes, we stick with the

single objective case here. In this sense, each row within

the matrix is the schedule for one of the units. X contains

schedules from the unconstrained search space (hypercube

[0, 1]d not further constrained by technical issues from the

units’ operations). X is initialized with random values. M

concurrently holds the respective feasible values generated by

the support vector decoder: Mi = γi(Xi). Thus, M always

represents a feasible (scaled) solution to the problem.

X and M represent the genotype and phenotype of a

solution respectively. In each iteration of the SA exactly

one schedule x from X is randomly chosen and mutated.

Modification is done at a randomly chosen element xk by

adding a random value p ∼ N(0, 1):

xk ←

xk + p− 1 if xk + p > 1

xk + p+ 1 if xk + p < 0

xk + p else.

(7)

Additionally, it can be useful especially for high-dimensional

schedules to allow mutations at more than one element at a

time. Only this mutated schedule has to be mapped by the

respective decoder in order to keep M consistent with X .

The system evolves as follows: at each temperature level

T t a Markov chain samples E(x). M always represents a

feasible, mutated solution that can be evaluated by Eq. (5).

The new proposal solution part xt+1 is accepted (according

to the Metropolis-Hastings criterion) with probability

A(xt → xt+1) = min
(

1, e
−∆E

Tt

)

, (8)

with ∆E = E(xt+1)− E(xt). In each iteration, temperature

T t is updated with with cooling rate λ ∈ [0, 1[: T t+1 ← λ·T t.

Algorithm 1 Basic scheme for the Simulated Annealing step

(with integrated support vector decoder).

1: Xij ← xi ∼ U(0, 1)d, 1 ≤ i ≤ n

2: Mij ← γi(Xi), 1 ≤ i ≤ n

3: ϑ← ϑstart

4: while ϑ < ϑmin do

5: choose random k; 1 ≤ k ≤ n

6: x∗ ←Xk

7: mutate(x∗)

8: M∗ ←M ; M∗

k ← γk(x
∗)

9: if e−
E(M∗)−E(M)

T > r ∼ U(0, 1) then

10: M ←M∗; Xk ← x∗

11: end if

12: T ← cooling(T)
13: end while

A major advantage of this approach is the anytime property:

at any time, a feasible solution exists. The Markov chain may

evolve in [0, 1]d·n without taking care of technical constraints

of the individual energy units. The decoder guarantees (apart

from minor inaccuracies that might easily be corrected [4])

the feasibility of the solution.

III. PARTITIONING THE SEARCH SPACE

By employing the support vector decoder approach in com-

bination with a heuristic solver for the optimization problem

as described in the previous section, we are able to solve

the scheduling problem for energy units efficiently without

needing to adapt any part of the process to unit-specific

properties such as technical constraints. The whole process is

visualized in Algorithm 2. The resulting matrix M comprises

m rows and d columns, where the ith row vector represents the

chosen schedule for energy unit Ui (for the remaining symbol

definitions refer to Section II).

Algorithm 2 Predictive Scheduling

1: m← amount of energy units

2: n← sample size per energy unit

3: d← length of planning horizon

4: for all energy unit Ui ∈ U do

5: si ← predicted state of Ui at the beginning of the

planning horizon

6: repeat

7: initialize simulation model for Ui with si
8: simulate feasible schedule of length d

9: until F (Ui) contains n feasible schedules

10: scale sample F (Ui) using ρi
11: calculate support vector model Si
12: build support vector decoder γi
13: end for

14: return M ←
(

solve δ
(
∑m

i=1 ρ
−1
i ◦ γ(xi), ζ

)

→ min
)

In the considered application domain, predictive planning

is commonly done for day-ahead planning horizons, i. e.

d corresponds to 24 hours with a schedule resolution of

15 minutes. In our problem formulation, this yields a 96-

dimensional search space for each energy unit. Due to the

curse of dimensionality [24], this may introduce significant

negative effects. For instance, with larger problem dimensions,

the required amount of training data for the support vector

model increases exponentially [25]. This affects both the

generation of feasible schedule samples via simulation, as well

as learning the support vector models from these samples.

Moreover, solving the optimization problem itself gets more

time-consuming due to combinatorial explosion. Finally, as the

support vector decoder model is based on approximation, map-

ping accuracy deteriorates with larger dimensions. This may

lead to infeasible schedules being misleadingly recognized as

feasible.
According to [26], strategies to circumvent the curse of

dimensionality in such a case can be categorized as follows:

• Decomposition: Given that the problem is separable,

decomposition subdivides the problem into smaller parts

that are easier to solve.

554 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

• Screening: Less significant and redundant decision vari-

ables/dimensions are pruned from the problem descrip-

tion in order to reduce dimensionality.

• Mapping: The problem is mapped to a representation

comprising less dimensions. For example, by exploiting

correlations between variables in the original space, a

mapping can be designed that yields a correlation-free

space with less dimensions.

• Space Reduction: Using expert knowledge, parts of the

search space are excluded from optimization.

• Visualization: An expert prunes insignificant parts of

the search space using visualization techniques for high-

dimensional data. In contrast to Space Reduction, this is

done interactively during the optimization process.

For the considered support vector decoder approach, the

strategies Screening, Visualization, and Space Reduction with

expert’s help are inappropriate, as they rely on specific knowl-

edge about the individual problem instance to solve, which

contradicts the main motivation for our approach. Because

neigbouring values in the unit schedules are often quite similar

(i. e. the gradient between two time intervals is usually rather

small) and thus show some correlation, Mapping might be

applicable. After optimization, however, the resulting low-

dimensional power profile would have to be inversely mapped

to a feasible high-dimensional schedule again, which would

introduce further problems.

Finally, Decomposition offers a viable solution. We cannot

split the problem along the m axis with respect to the result

matrix M in Algorithm 2 (i. e. by optimizing over disjunct

sets of energy units), because in each time step along the d

axis, the schedule selections of all participating units have to

be regarded in order to minimize δ. On the other hand, the

problem formulation might allow us to optimize over each

time step along the d axis independently: If the employed

distance measure δ is a metric, it gets minimal if the individual

distances along the d axis are minimal. This holds true for the

Euclidean distance ‖·‖2 we are using in this paper. Therefore,

from the optimization point of view, the given problem seems

to be separable along the d axis. Formally, we define such a

partitioning of the search space as

π : N2 → N

(d, j, k) 7→ l = π(d, j, k),
(9)

where l = π(d, j, k) denotes the length of the jth parti-

tion along the d axis. The parameter k may hold arbitrary

implementation-specific values (cf. the equidistant partitioning

below). For a partitioning to be valid, the concatenation of all

generated partitions must yield the whole planning horizon:

∞
∑

j=1

π(d, j, k) = d (10)

Moreover, for convenience we require

∀i : π(d, j, k) = 0 ⇒ π(d, j + 1, k) = 0, (11)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2. Equidistant partitioning for d = 16 and k = 4.

i. e. as soon as the partitioning function yields the first zero

partition, every following partition must be zero as well.

Using this rather general definition of π, we may now define

different partitioning strategies. For example, the equidistant

partitioning subdivides the planning horizon into k partitions

of equal size

πeq(d, j, k) =

⌈ dk ⌉ if j ≤ k ∧ j ≤ dmod k,

⌊ dk ⌋ if j ≤ k ∧ j > dmod k,

0 else.

(12)

Figure 2 shows an example for this partitioning with d = 16
and k = 4. There are many other possible partitioning strate-

gies, ranging from simple arithmetic fragmentations to more

sophisticated strategies involving expert knowledge about the

use case at hand (i. e. the structure of the target profile or the

δ function). A particular promising approach is the entropy

partitioning, which exploits the entropy in the feasible sched-

ule samples to determine intervals of high vs. low flexibility

in the units’ scopes of actions, and partitions the search space

accordingly. But in order to remain maximally independent

from such expert knowledge, we go with the example of

equidistant partitioning in the remainder of this paper.

In order to implement a partitioning scheme like e. g. the

equidistant partitioning in our approach, we have to extend

Algorithm 2. Special care has to be taken regarding the

simulation of feasible schedules: Originally, in Algorithm 2,

each simulation model was initialized with the state of the

energy unit right at the beginning of the planning horizon,

and was executed for d time steps, such that each schedule

sample exactly covers the planning horizon. Using partitions,

however, schedule samples cannot be generated beforehand

for the whole planning horizon. In order to identify a unit’s

flexibility for a certain partition, the exact state of the unit

at the beginning of this partition has to be known. Thus,

before being able to process a partition, we have to assign

fixed schedules to the units for the preceding partition. As

a consequence, the overall process ranging from schedule

simulation to solving the optimization problem has to be

executed for each partition separately. This ensures that, after

the process finished for all partitions, the concatenated result

schedules are feasible overall. On the other hand, with this

approach we achieve a reduction of the design space (without

expert knowledge as proposed in [26]) as every subsequent

optimization process is already tackled to a fixed operational

state of each unit at the beginning of a partition. The resulting

process is visualized in Algorithm 3.

IV. EVALUATION

The objective of this paper is to explore the potential benefit

of partitioning the search space of the given combinatorial

CHRISTIAN HINRICHS ET AL.: PARTITIONING THE DATA DOMAIN OF COMBINATORIAL PROBLEMS 555

Algorithm 3 Predictive Scheduling with Partioning

1: m← amount of energy units

2: n← sample size per energy unit

3: d← length of planning horizon

4: for all energy unit Ui ∈ U do

5: si ← predicted state of Ui at the beginning of the

planning horizon

6: end for

7: j ← 1
8: k ← implementation specific value

9: while π(d, j, k) 6= 0 do

10: for all energy unit Ui ∈ U do

11: repeat

12: initialize simulation model for Ui with si
13: simulate feasible schedule of length π(d, j, k)
14: until F (Ui) contains n feasible schedules

15: scale sample F (Ui) using ρi
16: calculate support vector model Si
17: build support vector decoder γi
18: end for

19: M j ←
(

solve δ
(
∑m

i=1 ρ
−1
i ◦ γ(xi), ζ

)

→ min
)

20: for all energy unit Ui ∈ U do

21: run simulation model for Ui using schedule xi

22: si ← predicted state of Ui after running xi

23: end for

24: j ← j + 1
25: end while

26: return M ←
[

M j
]

problem in the data domain, followed by sequential optimiza-

tion of the individual partitions. In the previous section, a

partitioning framework has been introduced for this, along

with a detailed description of the according optimization

process chain. In order to evaluate the proposed approach with

respect to the objective, a simulation study has been conducted.

A. Simulation Setup

Following the considered example use case, we set up a

simulated virtual power plant for active power planning in

day-ahead scenarios, comprising CHP units with an 800 l

thermal buffer store each. We used the simulation model of an

EcoPower CHP as described in [3]. For each of those devices,

the thermal demand for a four-family house during winter was

simulated. The devices were operated in heat driven operation

and thus primarily had to compensate the simulated thermal

demand. Additionally, after shutting down, a device would

have to stay off for at least two hours. However, due to their

thermal buffer store and the ability to modulate the electrical

power output within the range of [1.3, 4.7], the devices still

have some flexibility available.

For the generation of feasible schedule samples, a successive

sampling strategy was employed: Instead of guessing whole

schedules and checking feasibility afterwards (using a device’s

simulation model), which leads to large rejection rates, a

period-wise guessing in combination with partial feasibility

checks is applied repeatedly to construct feasible schedules

in a successive manner, cf. [12]. Preliminary experiments

indicated 200 as an adequate size for F (Ui), so we set n = 200
in the present study.

The planning horizon was set to d = 96 time intervals,

i. e. 24 hours in 15 minute resolution, which is a common

use case in the application domain. As motivated in the pre-

vious section, we employ the equidistant partitioning function

πeq in this study. Regarding the parameter k, which defines

the length of the partitions and thus inversely determines

the number of partitions to be generated according to (12),

several experiments with k ∈ [1, 96] have been conducted.

For instance, k = 1 yields 96 partitions of length 1, while

k = 96 corresponds to a single partition of length 96, i. e. no

partitioning at all. This way, the influence of a partitioning on

the optimization can be explored in a structured manner.

While k represents the primary influence factor in our study,

other parameters may cause relevant interaction effects. Here,

especially the magnitude of the problem size along the m axis

(i. e. the number of energy units in the VPP, cf. Section III)

is of particular interest, as it affects the problem complexity

for each partition likewise. Similarly, different target profiles

ζ have to be examined with respect to the units’ available

flexibilities. For example, a target profile might turn out to be

easily realizable due to well matching schedule options in the

units’ search spaces, or vice-versa. The question arises whether

this influences the potential benefit of a partitioning, and how

a partitioning should be done in order to gain optimal results.

In all experiments, we used the Simulated Annealing solver

as outlined in Section II. Each examined parameter config-

uration was simulated 100 times, so that the results can be

interpreted with statistical soundness.

B. Results

The evaluation focuses on solution quality, which is calcu-

lated as remaining error after optimization:

δ

(

m
∑

i=1

ρ−1
i (xi), ζ

)

, xi ∈M (13)

where M denotes the m×d schedule matrix after all partitions

have been processed (line 26 in Algorithm 3). In the following,

results are visualized as box-charts, where the box spans from

the upper to the lower quartile of the data. The median is

shown as horizontal line within a box, whereas the whiskers

span over 1.5 × the interquartile range. Outliers are illustrated

by circle markers.

First of all, the general influence of different k values (i. e.

different partition sizes) is examined. As already stated in the

introduction, preliminary experiments indicated a potentially

increasing solution quality when the optimization algorithm is

applied in a successive manner to sequential partitions of the

planning horizon. For a more thorough analysis, we conducted

100 simulations for each k ∈ {2, 8, 24, 48, 96}. The results are

visualized in Figure 3. The optimization error clearly decreases

with more and thus smaller partitions (from right to left in the

figure). Comparing the extreme points, the partitioning even

556 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

2.0 8.0 24.0 48.0 96.0

Partition Size (k)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

O
p

ti
m

iz
a

ti
o

n
 E

rr
o

r

Fig. 3. Remaining optimization error for different partition sizes.

allows approaching the theoretical optimum δ = 0 when the

partitions are generated as small as possible (k = 2: despite

a few outliers, the box is squashed to a single line at δ = 0),

while the no-partitioning case yields the worst results most of

the time (k = 96).

These results support our hypothesis strikingly, but they

originate from a single experiment configuration only: On

the one hand, a fixed number of energy units was involved,

m = 10. On the other hand, the target profile ζ was generated

by aggregating randomly chosen sample schedules (one for

each energy unit) at the beginning of each experiment run. This

way, ζ formed an “easy” target, because the energy units were

able to approach it optimally in principle. In the following, we

will vary this configuration in these two aspects, in order to

gain more insights into the involved effects.

1) Interaction with the Number of Energy Units: In the con-

sidered application use-case of predictive scheduling for active

power planning in day-ahead scenarios, virtual power plants

may comprise different amounts of energy units, depending on

e. g. regional conditions. From the optimization point of view,

this corresponds to the problem size along the m axis. In a par-

titioned setting (i. e. k < d), each subproblem is of size m×k.

Hence, m affects the problem complexity for each partition

likewise. To reveal possible interactions with the magnitude

of k, the previous experiment with k ∈ {2, 8, 24, 48, 96} was

repeated for m ∈ {2, 5, 10, 25}. Figure 4 visualizes the results.

Similar to Figure 3, the optimization error generally decreases

with smaller partitions. Within each block, however, different

effects with respect to the magnitude of m are visible: For

the case of small partitions, the optimization error is lower

with larger values of m, while this trend reverses for large

partitions. As this is based on the absolute error, which is

naturally different for varying magnitudes of m, Figure 5

complementarily shows the same results against the normed

optimization error with respect to the number of units, i. e.

the remaining error per energy unit. Here, the trend towards

a lower error for small partitions is again clearly visible,

whereas the magnitude of m results in a change of the slope

for this trend. Concluding, m seems to affect the problem

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

O
p
ti
m

iz
a

ti
o
n
 E

rr
o
r

2 5 10 25 2 5 10 25 2 5 10 25 2 5 10 25 2 5 10 25Number of units (m)

2 8 24 48 96Partition Size (k)

Fig. 4. Remaining optimization error for different partition sizes and varying
amounts of energy units.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

O
p
ti
m

iz
a

ti
o
n
 E

rr
o
r

p
e
r

U
n
it

2 5 10 25 2 5 10 25 2 5 10 25 2 5 10 25 2 5 10 25Number of units (m)

2 8 24 48 96Partition Size (k)

Fig. 5. Remaining optimization error per energy unit for different partition
sizes and varying amounts of energy units.

complexity as a whole only, and does not seem to interact

with the partition size k.

2) Interaction with the Target Profile: In active power

planning, usually an application-specific target profile is given.

For instance, in day-ahead energy market scenarios, a target

profile would be chosen such that the economic outcome of the

VPP is maximized. In contrast, in supply-demand-matching

scenarios, the target profile might be e. g. a constant zero value,

such that the considered set of energy units (flexible producers

and consumers) can be treated as autonomous energy-wise.

While it is advisable to configure VPP and target profile in a

matching way, so that the latter is actually a feasible target for

the former, not all target profiles are equally easy to realize.

In our study, we abstract from application-specific scenarios

as follows. As a first step, a feasible target can be formed

by aggregating randomly chosen sample schedules (one for

each energy unit). This way, the existence of the theoretical

optimum (δ = 0) is guaranteed. We denote this type of target

with ζ0. To generate more difficult target profiles in an easy

but structured way, ζ0 can simply be shifted in magnitude:

ζi = ζ0 + i (14)

Please note that ζ is a vector, and the summation is performed

element-wise, of course. Matching the size of the considered

CHRISTIAN HINRICHS ET AL.: PARTITIONING THE DATA DOMAIN OF COMBINATORIAL PROBLEMS 557

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

O
p
ti
m

iz
a

ti
o
n
 E

rr
o
r

Target Deviation (i)

Partition Size (k)

-1 -½ -¼ 0 ¼ ½ 1 -1 -½ -¼ 0 ¼ ½ 1 -1 -½ -¼ 0 ¼ ½ 1 -1 -½ -¼ 0 ¼ ½ 1 -1 -½ -¼ 0 ¼ ½ 1

2 8 24 48 96

Fig. 6. Remaining optimization error for different partition sizes and varying
target profile deviations.

VPP in the present study, we choose values for i between 0 kW
and ±1 kW in the following experiment, in order to deviate the

target profile from “easy to solve optimally” towards “hard to

solve optimally”. Thus, as in the previous section, the original

experiment with k ∈ {2, 8, 24, 48, 96} was repeated for all ζi
with i ∈ {−1,−0.5,−0.25, 0, 0.25, 0.5, 1} in kW. The results

are presented in Figure 6. Similar to the results from Figure 4,

the general trend of better optimization results with smaller

partitions is visible. The case k = 2, i = −1 is an exception.

Here, the optimization was not able to find a feasible schedule

at all in the available time. This is due to the very low values

in the target profile in combination with a large number of

partitions: Due to the independent optimization of individual

partitions, the simulated CHP units stay off at the beginning

of the planning horizon until the thermal buffer stores are

exhausted. At that point in time, however, thermal demand

exceeds the available power from the CHPs, so that no feasible

schedule cannot be found anymore. With larger partitions, the

effect is not present, as the optimization can act anticipatory

towards feasibility (i. e. by choosing schedules that lead to a

poor optimization error, but in turn form a feasible solution).

This effect indicates that a strong partitioning can yield better

optimization results if enough flexibility is present, but might

also lead to infeasible solutions in extreme cases.

In addition to the general trend regarding the value of k,

a u-shaped course can be seen within each configuration

of the same partition size. In other words, solution quality

seems to deteriorate with larger deviations from ζ0, which

is not surprising at all. In order to focus on the interaction

between these two effects, Figure 7 visualizes the results

in a transposed way, i. e. the deviation i is visualized

along the horizontal axis, while the partition sizes k are

presented as line charts. For visualization purposes, the

shown data comprises mean values only. Furthermore, in this

experiment a larger amount of configurations was examined:

k ∈ {2, 4, 8, 16, 24, 32, 48, 96} and |i| ∈ {0, 0.25, . . . , 2}.
The results reveal an interesting relationship: For smaller

target deviations, configurations with smaller partitions yield

superior optimization results. In contrast, for larger target

deviations, larger partition sizes yield better results.

0 250 500 750 1,000 1,250 1,500 1,750 2,000
0

5,000

10,000

15,000

20,000

25,000

30,000

O
p
ti
m

iz
a

ti
o
n
 E

rr
o
r

Target Deviation (i)

2 4 8 16 24 32 48 96

Fig. 7. Remaining optimization error for varying target profile deviations
(horizontal axis) and different partition sizes (individual data series).

In summary, the last experiment supports our previous

hypothesis: With enough flexibility in a given problem config-

uration (in terms of feasible solution combinations with respect

to the fitness function), the solver significantly benefits from

a partitioning. On the other hand, in more difficult problem

formulations (i. e. with less flexibility in terms of feasible

solutions), the solver cannot cope with a large number of

independent partitions.

V. CONCLUSION

The objective of this paper was to explore the potential ben-

efit of partitioning the search space of the given combinatorial

problem in the data domain using the example of predictive

scheduling in the smart grid domain. We combined the parti-

tioning approach with a sequential optimization solving each

partition successively. Simulation models of different energy

units have been integrated directly in the process for handling

individual search spaces and operational constraints.

Several methods to cope with the challenge of high di-

mensionality in optimization problems have been proposed in

the past. A good overview on methods for computationally

expensive black-box functions (as might be the case when

using simulation models for computing objectives) is e. g.

given in [26]. Our approach is a mixture of design space

reduction and decomposition into sub-problems. To achieve

this we have to introduce simulation models as black-boxes

into the optimization process for sequentialization. Introducing

this sequence of independently solvable sub-problems reduces

the overall computationally effort and at the same time reduces

the design space so that modeling is more accurate and

optimization effort is reduced [26]. At the same time this

reduction leads to a limited choice especially for later sub-

problems. Sub-space parts of the design space may be missed

[26]. On the other hand, with our method, we may focus on

the whole sub-space at once without a need for subsequent

refinement like in other methods [26].

Our results support the hypothesis of an increasing solu-

tion quality when applying the optimization algorithm in a

558 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

successive manner to sequential partitions of the planning

horizon. For our experiments we mainly used a simulated

annealing approach as solver although our results can be

generalized to other solvers. In general, any solver benefits for

partitioned data domains in predictive scheduling if a problem

configuration contains enough flexibility in terms of feasible

solution combinations. With decreasing flexibility, additional

complexity induced by a growing number of partitions pre-

vails.
So far all simulations have been done with scenarios re-

garding predictive scheduling. Additional use cases like load

balancing can be easily adapted by exchanging the objective

functions, as the problem structure is similar to predictive

scheduling. Future work will concentrate on methods to clas-

sify the situation at hand in order to automatically decide on

appropriate partition of the combinatorial problem.

REFERENCES

[1] P. Palensky and D. Dietrich, “Demand side management: Demand
response, intelligent energy systems, and smart loads,” Industrial

Informatics, IEEE Transactions on, vol. 7, no. 3, pp. 381–
388, Aug 2011. doi: 10.1109/TII.2011.2158841. [Online]. Available:
http://dx.doi.org/10.1109/TII.2011.2158841

[2] N. . P. F. Arteconi, A. ; Hewitt, “Domestic demand-side management
(dsm): Role of heat pumps and thermal energy storage (tes) systems,”
Applied Thermal Engineering, 2013, Vol.51(1-2), pp.155-165, vol. 51,
no. 1-2, p. 155. doi: 10.1016/j.applthermaleng.2012.09.023. [Online].
Available: http://dx.doi.org/10.1016/j.applthermaleng.2012.09.023

[3] J. Bremer and M. Sonnenschein, “Model-based integration of
constrained search spaces into distributed planning of active power
provision,” Comput. Sci. Inf. Syst., vol. 10, no. 4, pp. 1823–
1854, 2013. doi: 10.2298/CSIS130304073B. [Online]. Available:
http://dx.doi.org/10.2298/CSIS130304073B

[4] ——, “Constraint-handling for optimization with support vector
surrogate models – A novel decoder approach,” in ICAART 2013

– Proceedings of the 5th International Conference on Agents

and Artificial Intelligence, J. Filipe and A. Fred, Eds., vol. 2.
Barcelona, Spain: SciTePress, 2013. doi: 10.5220/0004241100910100.
ISBN 978-989-8565-38-9 pp. 91–100. [Online]. Available: http:
//dx.doi.org/10.5220/0004241100910100

[5] J. Bremer, B. Rapp, and M. Sonnenschein, “Encoding distributed
search spaces for virtual power plants,” in IEEE Symposium Series

on Computational Intelligence 2011 (SSCI 2011), Paris, France,
4 2011. doi: 10.1109/CIASG.2011.5953329. [Online]. Available:
http://dx.doi.org/10.1109/CIASG.2011.5953329

[6] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou,
F. Ponci, and T. Funabashi, “Multi-agent systems for power engineering
applications—Part I: Concepts, approaches, and technical challenges,”
IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1743–
1752, 2007. doi: 10.1109/TPWRS.2007.908471. [Online]. Available:
http://dx.doi.org/10.1109/TPWRS.2007.908471

[7] M. Sonnenschein, C. Hinrichs, A. Nieße, and U. Vogel, “Supporting
renewable power supply through distributed coordination of energy
resources,” in ICT Innovations for Sustainability, ser. Advances in
Intelligent Systems and Computing, L. M. Hilty and B. Aebischer,
Eds. Springer International Publishing, 2015, vol. 310, pp. 387–404.
ISBN 978-3-319-09227-0. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-09228-7_23

[8] A. Nieße, S. Beer, J. Bremer, C. Hinrichs, O. Lünsdorf, and
M. Sonnenschein, “Conjoint dynamic aggregation and scheduling
for dynamic virtual power plants,” in Federated Conference on

Computer Science and Information Systems - FedCSIS 2014,

Warsaw, Poland, M. Ganzha, L. A. Maciaszek, and M. Paprzycki,
Eds., 9 2014. doi: 10.15439/2014F76. [Online]. Available: http:
//dx.doi.org/10.15439/2014F76

[9] J. Bremer and M. Sonnenschein, “A distributed greedy algorithm
for constraint-based scheduling of energy resources,” in FedCSIS,
M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012. ISBN 978-
83-60810-51-4 pp. 1285–1292.

[10] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the
state of the art,” Computer Methods in Applied Mechanics and

Engineering, vol. 191, no. 11-12, pp. 1245–1287, Jan. 2002. doi:
10.1016/S0045-7825(01)00323-1. [Online]. Available: http://dx.doi.org/
10.1016/S0045-7825(01)00323-1

[11] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomorphous
mappings, and constrained parameter optimization,” Evol. Comput.,
vol. 7, pp. 19–44, 03 1999. doi: 10.1162/evco.1999.7.1.19. [Online].
Available: http://dx.doi.org/10.1162/evco.1999.7.1.19

[12] J. Bremer and M. Sonnenschein, “Sampling the search space of energy
resources for self-organized, agent-based planning of active power pro-
vision,” in EnviroInfo, ser. Berichte aus der Umweltinformatik. Shaker,
2013, pp. 214–222.

[13] D. M. J. Tax and R. P. W. Duin, “Support vector data
description,” Mach. Learn., vol. 54, no. 1, pp. 45–66, 2004.
doi: 10.1023/B:MACH.0000008084.60811.49. [Online]. Available:
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49

[14] V. K. Vassilev, T. C. Fogarty, and J. F. Miller, “Information
characteristics and the structure of landscapes,” Evol. Comput., vol. 8,
no. 1, pp. 31–60, Mar. 2000. doi: 10.1162/106365600568095. [Online].
Available: http://dx.doi.org/10.1162/106365600568095

[15] J. Bremer and M. Sonnenschein, “Parallel tempering for constrained
many criteria optimization in dynamic virtual power plants,” in
2014 IEEE Symposium on Computational Intelligence Applications in

Smart Grid, CIASG 2014, Orlando, FL, USA, December 9-12, 2014.
IEEE, 2014. doi: 10.1109/CIASG.2014.7011551 pp. 51–58. [Online].
Available: http://dx.doi.org/10.1109/CIASG.2014.7011551

[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–
680, 1983. doi: 10.1126/science.220.4598.671. [Online]. Available:
http://dx.doi.org/10.1126/science.220.4598.671

[17] Y. Li, V. A. Protopopescu, N. Arnold, X. Zhang, and A. Gorin,
“Hybrid parallel tempering and simulated annealing method,” Applied

Mathematics and Computation, vol. 212, no. 1, pp. 216–228,
2009. doi: 10.1016/j.amc.2009.02.023. [Online]. Available: http:
//dx.doi.org/10.1016/j.amc.2009.02.023

[18] A. Müller, J. J. Schneider, and E. Schömer, “Packing a multidisperse
system of hard disks in a circular environment,” Phys. Rev. E, vol. 79,
p. 021102, Feb 2009. doi: 10.1103/PhysRevE.79.021102. [Online].
Available: http://dx.doi.org/10.1103/PhysRevE.79.021102

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” The Journal of Chemical Physics, vol. 21, no. 6,
pp. 1087–1092, 1953. doi: 10.1063/1.1699114. [Online]. Available:
http://dx.doi.org/10.1063/1.1699114

[20] W. K. Hastings, “Monte carlo sampling methods using markov
chains and their applications,” Biometrika, vol. 57, no. 1, pp.
97–109, 1970. doi: 10.1093/biomet/57.1.97. [Online]. Available:
http://dx.doi.org/10.1093/biomet/57.1.97

[21] W. H. Wong and F. Liang, “Dynamic weighting in Monte Carlo
and optimization,” Applied Mathematics. Proceedings of the National

Academic of Science, vol. 94, pp. 14 220–14 224, Dec. 1997.
[22] E. Marinari and G. Parisi, “Simulated tempering: a new Monte Carlo

scheme,” Europhys. Lett., vol. 19, no. 6, 1992.
[23] S. Brown and T. Head-Gordon, “Cool walking: A new markov chain

monte carlo sampling method.” Journal of Computational Chemistry,
vol. 24, no. 1, pp. 68–76, 2003. doi: 10.1002/jcc.10181. [Online].
Available: http://dx.doi.org/10.1002/jcc.10181

[24] D. L. Donoho, “High-dimensional data analysis: The curses and bless-
ings of dimensionality. aide-memoire of a lecture at,” in AMS Conference

on Math Challenges of the 21st Century, 2000.
[25] M. Verleysen and D. François, “The curse of dimensionality in data

mining and time series prediction,” in Computational Intelligence

and Bioinspired Systems, Lecture Notes in Computer Science 3512.
Springer, 2005. doi: 10.1007/11494669_93 pp. 758–770. [Online].
Available: http://dx.doi.org/10.1007/11494669_93

[26] S. Shan and G. G. Wang, “Survey of modeling and
optimization strategies to solve high-dimensional design problems
with computationally-expensive black-box functions,” Structural

and Multidisciplinary Optimization, vol. 41, no. 2, pp. 219–
241, 2010. doi: 10.1007/s00158-009-0420-2. [Online]. Available:
http://dx.doi.org/10.1007/s00158-009-0420-2

CHRISTIAN HINRICHS ET AL.: PARTITIONING THE DATA DOMAIN OF COMBINATORIAL PROBLEMS 559

