Skip to main content
Log in

Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and heterogeneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi-variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorrelation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy assessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.B., Sabol, D.E., Kapos, V., et al., 1995. Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens. Environ., 52(2):137–154. [doi:10.1016/0034-4257(94)00098-8]

    Article  Google Scholar 

  • Aguilar, M.A., Saldaña, M.M., Aguilar, F.J., 2013. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. Int. J. Remote Sens., 34(7):2583–2606. [doi:10.1080/01431161.2012.747018]

    Article  Google Scholar 

  • Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ., 62(3):241–252. [doi:10.1016/S0034-4257(97)00104-1]

    Article  Google Scholar 

  • Chen, Y., Shi, P., Fung, T., et al., 2007. Object-oriented classification for urban land cover mapping with ASTER imagery. Int. J. Remote Sens., 28(20):4645–4651. [doi:10.1080/01431160500444731]

    Article  Google Scholar 

  • Deng, J.S., Wang, K., Deng, Y.H., et al., 2008. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens., 29(16):4823–4838. [doi:10.1080/01431160801950162]

    Article  Google Scholar 

  • Durieux, L., Lagabrielle, E., Nelson, A., 2008. A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS J. Photogr. Remote Sens., 63(4):399–408. [doi:10.1016/j.isprsjprs.2008.01.005]

    Article  Google Scholar 

  • Han, N., Wang, K., Yu, L., et al., 2012. Integration of texture and landscape features into object-based classification for delineating Torreya using IKONOS imagery. Int. J. Remote Sens., 33(7):2003–2033. [doi:10.1080/01431161.2011.605084]

    Article  Google Scholar 

  • Hermosilla, T., Ruiz, L.A., Recio, J.A., et al., 2012. Assessing contextual descriptive features for plot-based classification of urban areas. Landscape Urban Plan., 106(1):124–137. [doi:10.1016/j.landurbplan.2012.02.008]

    Article  Google Scholar 

  • Hu, S., Wang, L., 2013. Automated urban land-use classification with remote sensing. Int. J. Remote Sens., 34(3):790–803. [doi:10.1080/01431161.2012.714510]

    Article  Google Scholar 

  • Jacquin, A., Misakova, L., Gay, M., 2008. A hybrid object-based classification approach for mapping urban sprawl in periurban environment. Landscape Urban Plan., 84(2):152–165. [doi:10.1016/j.landurbplan.2007.07.006]

    Article  Google Scholar 

  • Li, G., Weng, Q., 2005. Using Landsat ETM+ imagery to measure population density in Indianapolis, Indiana, USA. Photogr. Eng. Remote Sens., 71(8):947. [doi:10.14358/PERS.71.8.947]

    Article  Google Scholar 

  • Livingston, F., 2005. Implementation of Breiman’s random forest machine learning algorithm. ECE591Q Machine Learning Journal Paper.

    Google Scholar 

  • Lu, D., Weng, Q., 2006. Use of impervious surface in urban land-use classification. Remote Sens. Environ., 102(1–2):146–160. [doi:10.1016/j.rse.2006.02.010]

    Article  Google Scholar 

  • Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28(5):823–870. [doi:10.1080/01431160600746456]

    Article  Google Scholar 

  • Mathieu, R., Freeman, C., Aryal, J., 2007. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landscape Urban Plan., 81(3):179–192. [doi:10.1016/j.landurbplan.2006.11.009]

    Article  Google Scholar 

  • Novack, T., Esch, T., Kux, H., et al., 2011. Machine learning comparison between WorldView-2 and QuickBird-2-simulated imagery regarding object-based urban land cover classification. Remote Sens., 3(10):2263–2282. [doi:10.3390/rs3102263]

    Article  Google Scholar 

  • Pacifici, F., Chini, M., Emery, W.J., 2009. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ., 113(6):1276–1292. [doi:10.1016/j.rse.2009.02.014]

    Article  Google Scholar 

  • Ridd, M.K., 1995. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. Int. J. Remote Sens., 16(12):2165–2185. [doi:10.1080/01431169508954549]

    Article  Google Scholar 

  • Settle, J.J., Drake, N.A., 1993. Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens., 14(6):1159–1177. [doi:10.1080/01431169308904402]

    Article  Google Scholar 

  • Shaban, M.A., Dikshit, O., 2001. Improvement of classification in urban areas by the use of textural features: the case study of Lucknow City, Uttar Pradesh. Int. J. Remote Sens., 22(4):565–593. [doi:10.1080/01431160050505865]

    Article  Google Scholar 

  • Shahtahmassebi, A., Pan, Y., Lin, L., et al., 2014. Implications of land use policy on impervious surface cover change in Cixi County, Zhejiang Province, China. Cities, 39:21–36. [doi:10.1016/j.cities.2014.02.002]

    Article  Google Scholar 

  • Shanmugan, K.S., Narayanan, V., Frost, V.S., et al., 1981. Textural features for radar image analysis. IEEE Trans. Geosci. Remote Sens., GE-19(3):153–156. [doi:10.1109/TGRS.1981.350344]

    Article  Google Scholar 

  • Smith, M.O., Ustin, S.L., Adams, J.B., et al., 1990. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ., 31(1):1–26. [doi:10.1016/0034-4257(90)90074-V]

    Article  Google Scholar 

  • Trimble Germany GmbH, 2012. eCognition Developer 8.7.1:Reference Book. Documentation, T. Munich, Germany.

    Google Scholar 

  • Wu, B., Wang, X., Shen, H., et al., 2012. Feature selection based on max-min-associated indices for classification of remotely sensed imagery. Int. J. Remote Sens., 33(17):5492–5512. [doi:10.1080/01431161.2012.663111]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Additional information

Project supported by the Chinese Ministry of Environmental Protection (No. STSN-05-11), Zhejiang Key Scientific and Technological Innovation Team Projects (No. 2010R50030), and the National Natural Science Foundation of China (No. 31172023)

ORCID: Li-gang MA, http://orcid.org/0000-0001-9377-2189

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Lg., Deng, Js., Yang, H. et al. Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model. Frontiers Inf Technol Electronic Eng 16, 238–248 (2015). https://doi.org/10.1631/FITEE.1400083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400083

Key words

CLC number

Navigation