Skip to main content
Log in

Thermal-aware relocation of servers in green data centers

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Rise in inlet air temperature increases the corresponding outlet air temperature from the server. As an added effect of rise in inlet air temperature, some active servers may start exhaling intensely hot air to form a hotspot. Increase in hot air temperature and occasional hotspots are an added burden on the cooling mechanism and result in energy wastage in data centers. The increase in inlet air temperature may also result in failure of server hardware. Identifying and comparing the thermal sensitivity to inlet air temperature for various servers helps in the thermal-aware arrangement and location switching of servers to minimize the cooling energy wastage. The peak outlet temperature among the relocated servers can be lowered and even be homogenized to reduce the cooling load and chances of hotspots. Based upon mutual comparison of inlet temperature sensitivity of heterogeneous servers, this paper presents a proactive approach for thermal-aware relocation of data center servers. The experimental results show that each relocation operation has a cooling energy saving of as much as 2.1 kW·h and lowers the chances of hotspots by over 77%. Thus, the thermal-aware relocation of servers helps in the establishment of green data centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABB, 2013. Efficient DC Power Supply for Data Centers. Available from http://www.electricalreview.co.uk/features/9475-efficient-dc-power-supply-for-data-centres

    Google Scholar 

  • Ahuja, N., 2012. Datacenter power savings through high ambient datacenter operation: CFD modeling study. Proc. 28th Annual IEEE Semiconductor Thermal Measurement and Management Symp., p.104–107. [doi:10.1109/STHERM.2012.6188833]

    Google Scholar 

  • Ahuja, N., Rego, C., Ahuja, S., et al., 2011. Data center efficiency with higher ambient temperatures and optimized cooling control. Proc. 27th Annual IEEE Semiconductor Thermal Measurement and Management Symp., p.105–109. [doi:10.1109/STHERM.2011.5767186]

    Google Scholar 

  • ASHRAE, 2011. 2011 Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance. Available from http://ecoinfo.cnrs.fr/IMG/pdf/ashrae_2011_thermal_guidelines_data_center.pdf

    Google Scholar 

  • Banerjee, A., Mukherjee, T., Varsamopoulos, G., et al., 2010. Cooling-aware and thermal-aware workload placement for green HPC data centers. Int. Green Computing Conf., p.245–256. [doi:10.1109/GREENCOMP.2010.5598306]

    Chapter  Google Scholar 

  • Banerjee, A., Mukherjee, T., Varsamopoulos, G., et al., 2011. Integrating cooling awareness with thermal aware workload placement for HPC data centers. Sustain. Comput. Inform. Syst., 1(2):134–150. [doi:10.1016/j.suscom.2011. 02.003]

    Google Scholar 

  • BBC, 2014. Energy Transfer and Storage. Available from http://www.bbc.co.uk/bitesize/ks3/science/energy_electricity_forces/energy_transfer_storage/revision/1/

    Google Scholar 

  • Corradi, A., Fanelli, M., Foschini, L., 2011. Increasing cloud power efficiency through consolidation techniques. Proc. IEEE Symp. on Computers and Communications, p.129–134. [doi:10.1109/ISCC.2011.5984005]

    Google Scholar 

  • Huck, S., 2011. Measuring Processor Power TDP vs. ACP. Available from http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf

    Google Scholar 

  • Jonas, M., Varsamopoulos, G., Gupta, S.K.S., 2007. On developing a fast, cost-effective and non-invasive method to derive data center thermal maps. Proc. IEEE Int. Conf. on Cluster Computing, p.474–475. [doi:10.1109/CLUSTR.2007.4629269]

    Google Scholar 

  • Jonas, M., Varsamopoulos, G., Gupta, S.K.S., 2010. Noninvasive thermal modeling techniques using ambient sensors for greening data centers. Proc. 39th Int. Conf. on Parallel Processing Workshops, p.453–460. [doi:10.1109/ICPPW.2010.67]

    Google Scholar 

  • Koomey, J., 2011. Growth in Data Center Electricity Use 2005 to 2010. Analytics Press, Oakland, CA.

    Google Scholar 

  • Kusic, D., Kephart, J.O., Hanson, J.E., et al., 2009. Power and performance management of virtualized computing environments via lookahead control. Cluster Comput., 12(1):1–15. [doi:10.1007/s10586-008-0070-y]

    Article  Google Scholar 

  • LD Didactic Gmbh. Converting Electrical Energy into Heat Energy—Measuring with the Joule and Wattmeter. LD DIDACTIC GmbH, Germany.

  • Lee, E.K., Kulkarni, I., Pompili, D., et al., 2012. Proactive thermal management in green datacenters. J. Supercomput., 60(2):165–195. [doi:10.1007/s11227-010-0453-8]

    Article  Google Scholar 

  • Liu, Z., Chen, Y., Bash, C., et al., 2012. Renewable and cooling aware workload management for sustainable data centers. ACM SIGMETRICS Perform. Eval. Rev., 40(1): 175–186. [doi:10.1145/2318857.2254779]

    Article  Google Scholar 

  • Masiero, M., 2012. CPU Charts 2012: 86 Processors from AMD and Intel, Tested. Tom’s Hardware.

    Google Scholar 

  • Mersenne Research, Inc., 2012. Great Internet Mersenne Prime Search (GIMPS). Available from http://www.mersenne.org/freesoft/

    Google Scholar 

  • Moore, J., Chase, J., Ranganathan, P., et al., 2005. Making scheduling “cool”: temperature-aware workload placement in data centers. Proc. USENIX Annual Technical Conf., p.61–75.

    Google Scholar 

  • Mukherjee, T., Banerjee, A., Varsamopoulos, G., et al., 2009. Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Comput. Netw., 53(17):2888–2904. [doi:10.1016/j.comnet.2009.06.008]

    Article  MATH  Google Scholar 

  • Rodero, I., Lee, E.K., Pompili, D., et al., 2010. Towards energy-efficient reactive thermal management in instrumented datacenters. Proc. 11th IEEE/ACM Int. Conf. on Grid Computing, p.321–328. [doi:10.1109/GRID.2010.5698002]

    Google Scholar 

  • Rodero, I., Viswanathan, H., Lee, E.K., et al., 2012. Energyefficient thermal-aware autonomic management of virtualized HPC cloud infrastructure. J. Grid Comput., 10(3): 447–473. [doi:10.1007/s10723-012-9219-2]

    Article  Google Scholar 

  • Sansottera, A., Cremonesi, P., 2011. Cooling-aware workload placement with performance constraints. Perform. Eval., 68(11):1232–1246. [doi:10.1016/j.peva.2011.07.018]

    Article  Google Scholar 

  • Tang, Q., Mukherjee, T., Gupta, S.K.S., et al., 2006. Sensorbased fast thermal evaluation model for energy efficient high-performance datacenters. Proc. 4th Int. Conf. on Intelligent Sensing and Information Processing, p.203–208. [doi:10.1109/ICISIP.2006.4286097]

    Google Scholar 

  • Tang, Q., Gupta, S.K.S., Varsamopoulos, G., 2007. Thermalaware task scheduling for data centers through minimizing heat recirculation. Proc. IEEE Int. Conf. on Cluster Computing, p.129–138. [doi:10.1109/CLUSTR.2007.462 9225]

    Google Scholar 

  • Tu, C.Y., Kuo, W.C., Teng, W.H., et al., 2010. A poweraware cloud architecture with smart metering. Proc. 39th Int. Conf. on Parallel Processing Workshops, p.497–503. [doi:10.1109/ICPPW.2010.73]

    Google Scholar 

  • U.S. Environmental Protection Agency, 2007. Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431. Available from http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf?6133-414f

    Google Scholar 

  • VMware Inc., 2009. VMware vSphere Basics ESXi 5.0 vCenter Server 5.0 (in Chinese). Available from http://pubs.vmware.com/vsphere-50/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-50-basics-guide.pdf

    Google Scholar 

  • Wang, L., von Laszewski, G., Dayal, J., et al., 2009a. Thermal aware workload scheduling with backfilling for green data centers. Proc. IEEE 28th Int. Performance Computing and Communications Conf., p.289–296. [doi:10.1109/PCCC.2009.5403821]

    Google Scholar 

  • Wang, L., von Laszewski, G., Dayal, J., et al., 2009b. Towards thermal aware workload scheduling in a data center. Proc. 10th Int. Symp. on Pervasive Systems, Algorithms, and Networks, p.116–122. [doi:10.1109/I-SPAN.2009.22]

    Google Scholar 

  • Wang, L., Khan, S.U., Dayal, J., 2012. Thermal aware workload placement with task-temperature profiles in a data center. J. Supercomput., 61(3):780–803. [doi:10.1007/s11227-011-0635-z]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tayyab Chaudhry.

Additional information

ORCID: Muhammad Tayyab CHAUDHRY, http://orcid.org/0000-0001-9485-0054

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhry, M.T., Ling, T.C., Hussain, S.A. et al. Thermal-aware relocation of servers in green data centers. Frontiers Inf Technol Electronic Eng 16, 119–134 (2015). https://doi.org/10.1631/FITEE.1400174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400174

Key words

CLC number

Navigation