Skip to main content
Log in

Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, L.R., Ribickis, L., 2013. Fuzzy logic analysis of photovoltaic data for obstacle avoidance or mapping robot. Elektron. Elektrotech., 19(1):3–6. [doi:10.5755/j01.eee.19.1.3243]

    Google Scholar 

  • Ahmad, O., Ullah, I., Iqbal, J., 2014. A multi-robot educational and research framework. Int. J. Acad. Res., 6(2):217–222.

    Article  Google Scholar 

  • Ani, O.A., Xu, H., Shen, Y.P., et al., 2013. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(1):11–29. [doi:10.1631/jzus.C12a0200]

    Article  Google Scholar 

  • Dakhlallah, J., Glaser, S., Mammar, S., 2008. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. American Control Conf., p.4597–4602. [doi:10.1109/ACC.2008.4587220]

    Google Scholar 

  • Ding, L., Gao, H., Deng, Z., et al., 2010. Wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South Univ. Technol., 17(1):129–135. [doi:10.1007/s11771-010-0021-7]

    Article  Google Scholar 

  • Ding, L., Gao, H., Deng, Z., et al., 2011. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramech., 48(1):27–45. [doi:10.1016/j.jterra.2010.08.001]

    Article  Google Scholar 

  • Ding, L., Gao, H., Deng, Z., et al., 2013. Longitudinal slip versus skid of planetary rovers’ wheels traversing on deformable slopes. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2842–2848. [doi:10.1109/IROS.2013.6696758]

    Google Scholar 

  • Gao, H., Guo, J., Ding, L., et al., 2013. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J. Terramech., 50(5-6):327–343. [doi:10.1016/j.jterra.2013.10.001]

    Article  Google Scholar 

  • Iqbal, J., Islam, R.U., Khan, H., 2012. Modeling and analysis of a 6 DOF robotic arm manipulator. Can. J. Electr. Electron. Eng., 3(6):300–306.

    Google Scholar 

  • Iqbal, J., Nabi, S.R., Khan, A., et al., 2013. A novel track-drive mobile robotic framework for conducting projects on robotics and control systems. Life Sci. J., 10(3): 130–137.

    Google Scholar 

  • Ishigami, G., Miwa, A., Nagatani, K., et al., 2007. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot., 24(3):233–250. [doi:10.1002/rob.20187]

    Article  Google Scholar 

  • Krejsa, J., Vechet, S., 2012. Infrared beacons based localization of mobile robot. Elektron. Elektrotech., 117(1): 17–22. [doi:10.5755/j01.eee.117.1.1046]

    Google Scholar 

  • Kulakowski, B.T., 1991. Mathematical model of skid resistance as a function of speed. In: Pavement Management: Data Collection, Analysis, and Storage. Transportation Research Board, USA, p.26–33.

    Google Scholar 

  • Li, Y.P., Zielinska, T., Ang, V.M.H., et al., 2006. Wheel-ground interaction modelling and torque distribution for a redundant mobile robot. Proc. IEEE Int. Conf. on Robotics and Automation, p.3362–3367. [doi:10.1109/ROBOT.2006.1642215]

    Google Scholar 

  • Manzoor, S., Islam, R.U., Khalid, A., et al., 2014. An open-source multi-DOF articulated robotic educational platform for autonomous object manipulation. Robot. Comput.-Integr. Manuf., 30(3):351–362. [doi:10.1016/j.rcim.2013.11.003]

    Article  Google Scholar 

  • Pusca, R., Ait-Amirat, Y., Berthon, A., et al., 2002. Modeling and simulation of a traction control algorithm for an electric vehicle with four separate wheel drives. Proc. IEEE 56th Vehicular Technology Conf., p.1671–1675. [doi:10.1109/VETECF.2002.1040500]

    Chapter  Google Scholar 

  • Sánchez-Hermosilla, J., Rodríguez, F., González, R., et al., 2010. A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, Croatia, p.583–607.

    Google Scholar 

  • Sidek, N., Sarkar, N., 2008. Dynamic modeling and control of nonholonomic mobile robot with lateral slip. Proc. 3rd Int. Conf. on Systems, p.35–40. [doi:10.1109/ICONS.2008.22]

    Google Scholar 

  • Ward, C.C., Iagnemma, K., 2008. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans. Robot., 24(4):821–831. [doi:10.1109/TRO.2008.924945]

    Article  Google Scholar 

  • Wong, J.Y., Reece, A.R., 1967. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: Part II. Performance of towed rigid wheels. J. Terramech., 4(2):7–25. [doi:10.1016/0022-4898(67)90047-X]

    Article  Google Scholar 

  • Zielinska, T., Chmielniak, A., 2010. Controlling the slip in mobile robots. Proc. 13th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, p.13–20.

    Chapter  Google Scholar 

  • Zohaib, M., Pasha, S.M., Javaid, N., et al., 2014a. An improved algorithm for collision avoidance in environments having U and H shaped obstacles. Stud. Inform. Contr., 23(1):97–106.

    Google Scholar 

  • Zohaib, M., Pasha, S.M., Javaid, N., et al., 2014b. IBA: intelligent bug algorithm—a novel strategy to navigate mobile robots autonomously. Proc. 3rd Int. Multi-topic Conf., p.291–299. [doi:10.1007/978-3-319-10987-9_27]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshed Iqbal.

Additional information

Project supported by the European Commission under the Erasmus Mundus Master Program

ORCID: Jamshed IQBAL, http://orcid.org/0000-0002-0795-0282

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Iqbal, J., Baizid, K. et al. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Frontiers Inf Technol Electronic Eng 16, 166–172 (2015). https://doi.org/10.1631/FITEE.1400183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400183

Key words

CLC number

Navigation