Skip to main content
Log in

Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Protein complexes are the basic units of macro-molecular organizations and help us to understand the cell’s mechanism. The development of the yeast two-hybrid, tandem affinity purification, and mass spectrometry high-throughput proteomic techniques supplies a large amount of protein-protein interaction data, which make it possible to predict overlapping complexes through computational methods. Research shows that overlapping complexes can contribute to identifying essential proteins, which are necessary for the organism to survive and reproduce, and for life’s activities. Scholars pay more attention to the evaluation of protein complexes. However, few of them focus on predicted overlaps. In this paper, an evaluation criterion called overlap maximum matching ratio (OMMR) is proposed to analyze the similarity between the identified overlaps and the benchmark overlap modules. Comparison of essential proteins and gene ontology (GO) analysis are also used to assess the quality of overlaps. We perform a comprehensive comparison of serveral overlapping complexes prediction approaches, using three yeast protein-protein interaction (PPI) networks. We focus on the analysis of overlaps identified by these algorithms. Experimental results indicate the important of overlaps and reveal the relationship between overlaps and identification of essential proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamcsek, B., Palla, G., Farkas, I.J., et al., 2006. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 22(8):1021–1023. [doi:10.1093/bioinformatics/btl039]

    Article  Google Scholar 

  • Bader, G.D., Hogue, C.W.V., 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform., 4:2.1–2.27. [doi:10.1186/1471-2105-4-2]

    Article  Google Scholar 

  • Boyle, E.I., Weng, S., Gollub, J., et al., 2004. GO::Term-Finder—open source software for accessing gene ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 20(18):3710–3715. [doi:10.1093/bioinformatics/bth456]

    Article  Google Scholar 

  • Chen, B., Shi, J., Zhang, S., et al., 2013. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy. Proteomics, 13(2): 269–277. [doi:10.1002/pmic.201200336]

    Article  Google Scholar 

  • Cherry, J.M., Adler, C., Ball, C., et al., 1998. SGD: Saccharomyces Genome Database. Nucl. Acids Res., 26(1): 73–79. [doi:10.1093/nar/26.1.73]

    Article  Google Scholar 

  • Dezső, Z., Oltvai, Z.N., Barabási, A.L., 2003. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res., 13:2450–2454. [doi:10.1101/gr.1073603]

    Article  Google Scholar 

  • Enright, A.J., van Dongen, S., Ouzounis, C.A., 2002. An efficient algorithm for large-scale detection of protein families. Nucl. Acids Res., 30(7):1575–1584. [doi:10. 1093/nar/30.7.1575]

    Article  Google Scholar 

  • Gavin, A.C., Aloy, P., Grandi, P., et al., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440:631–636. [doi:10.1038/nature04532]

    Article  Google Scholar 

  • Han, J.D., Bertin, N., Hao, T., et al., 2004. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430:88–93. [doi:10. 1038/nature02555]

    Article  Google Scholar 

  • Hart, G.T., Lee, I., Marcotte, E.M., 2007. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinform., 8:236.1–236.11. [doi:10.1186/1471-2105-8-236]

    Article  Google Scholar 

  • Hu, H., Yan, X., Huang, Y., et al., 2005. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 21(suppl 1):i213–i221. [doi:10.1093/bioinformatics/bti1049]

    Article  Google Scholar 

  • Jiang, P., Singh, M., 2010. SPICi: a fast clustering algorithm for large biological networks. Bioinformatics, 26(8): 1105–1111. [doi:10.1093/bioinformatics/btq078]

    Article  Google Scholar 

  • Krogan, N., Cagney, G., Yu, H., et al., 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440:637–643. [doi:10.1038/nature04670]

    Article  Google Scholar 

  • Lei, X., Wu, S., Ge, L., et al., 2013. Clustering and overlapping modules detection in PPI network based on IBFO. Proteomics, 13(2):278–290. [doi:10.1002/pmic.201200309]

    Article  Google Scholar 

  • Leung, H.C.M., Xiang, Q., Yiu, S.M., et al., 2009. Predicting protein complexes from PPI data: a core-attachment approach. J. Comput. Biol., 16(2):133–144. [doi:10.1089/cmb.2008.01TT]

    Article  MathSciNet  Google Scholar 

  • Liu, G., Wong, L., Chua, H.N., 2009. Complex discovery from weighted PPI networks. Bioinformatics, 25(15):1891–1897. [doi:10.1093/bioinformatics/btp311]

    Article  Google Scholar 

  • Macropol, K., Can, T., Singh, A.K., 2009. RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinform., 10:283.1–283.10. [doi:10.1186/1471-2105-10-283]

    Article  Google Scholar 

  • Maraziotis, I.A., Dimitrakopoulou, K., Bezerianos, A., 2007. Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinform., 8:408.1–408.15. [doi:10.1186/1471-2105-8-408]

    Article  Google Scholar 

  • Mewes, H.W., Frishman, D., Mayer, K.F.X., et al., 2006. MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucl. Acids Res., 34(suppl 1):D169–D172. [doi:10.1093/nar/gkj148]

    Article  Google Scholar 

  • Nepusz, T., Yu, H., Paccanaro, A., 2012. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9(5):471–472. [doi:10.1038/nmeth.1938]

    Article  Google Scholar 

  • Ni, W.Y., Xiong, H.J., Zhao, B.H., et al., 2013. Predicting overlapping protein complexes in weighted interactome networks. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(10):756–765. [doi:10.1631/jzus.C13b0097]

    Article  Google Scholar 

  • Palla, G., Derényi, I., Farkas, I., et al., 2005. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435:814–818. [doi:10.1038/nature03607]

    Article  Google Scholar 

  • Pu, S., Wong, J., Turner, B., et al., 2009. Up-to-date catalogues of yeast protein complexes. Nucl. Acids Res., 37(3): 825–831. [doi:10.1093/nar/gkn1005]

    Article  Google Scholar 

  • Shih, Y.K., Parthasarathy, S., 2012. Identifying functional modules in interaction networks through overlapping Markov clustering. Bioinformatics, 28(18):i473–i479. [doi:10.1093/bioinformatics/bts370]

    Article  Google Scholar 

  • Stark, C., Breitkreutz, B.J., Reguly, T., et al., 2006. BioGRID: a general repository for interaction datasets. Nucl. Acids Res., 34(suppl 1):D535–D539. [doi:10.1093/nar/gkj109]

    Article  Google Scholar 

  • Wu, M., Li, X., Kwoh, C.K., et al., 2009. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform., 10:169.1–169.16. [doi:10.1186/1471-2105-10-169]

    Google Scholar 

  • Zhang, R., Lin, Y., 2009. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucl. Acids Res., 37(suppl 1):D455–D458. [doi:10.1093/nar/gkn858]

    Article  Google Scholar 

  • Zhao, B., Wang, J., Li, M., et al., 2014. Prediction of essential proteins based on overlapping essential modules. IEEE Trans. NanoBiosci., 13(4):415–424. [doi:10.1109/TNB.2014.2337912]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-hai Zhao.

Additional information

Project supported by the National Scientific Research Foundation of Hunan Province, China (Nos. 14C0096, 10C0408, and 10B010), the Natural Science Foundation of Hunan Province, China (Nos. 13JJ4106 and 14JJ3138), and the Science and Technology Plan Project of Hunan Province, China (No. 2010FJ3044)

ORCID: Bi-hai ZHAO, http://orcid.org/0000-0003-0870-7468

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xx., Xiao, Qh., Li, B. et al. Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules. Frontiers Inf Technol Electronic Eng 16, 293–300 (2015). https://doi.org/10.1631/FITEE.1400282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400282

Key words

CLC number

Navigation