Skip to main content
Log in

A new technique for islanding operation of distribution network connected with mini hydro

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

An islanding operation of a distribution network is a topic of interest due to the significant penetration of distributed generation (DG) in a power system network. However, controlling the frequency of an islanded distribution system remains an unresolved issue, especially when the load exceeds the generation. This paper presents a new technique for a successful islanding operation of a distribution network connected with multiple mini hydro based DGs. The proposed technique is based on three main parts. The first part uses an islanding detection technique to detect the islanding event correctly. The second part consists of a power imbalance estimation module (PIEM), which determines the power imbalance between the generation and load demand. The third part consists of a load shedding controller, which receives the power imbalance value and performs load shedding according to load priority. The proposed technique is validated on an 11 kV existing Malaysia distribution network. The simulation results show that the proposed technique is effective in performing a successful islanding operation by shedding a significant number of loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghamohammadi, M.R., Shahmohammadi, A., 2012. Intentional islanding using a new algorithm based on ant search mechanism. Int. J. Electr. Power Energy Syst., 35(1):138–147. [doi:10.1016/j.ijepes.2011.10.006]

    Article  Google Scholar 

  • AlRashidi, M.R., AlHajri, M.F., 2011. Optimal planning of multiple distributed generation sources in distribution networks: a new approach. Energy Conv. Manag., 52(11):3301–3308. [doi:10.1016/j.enconman.2011.06.001]

    Article  Google Scholar 

  • Anderson, P.M., Mirheydar, M., 1992. An adaptive method for setting underfrequency load shedding relays. IEEE Trans. Power Syst., 7(2):647–655. [doi:10.1109/59.141770]

    Article  Google Scholar 

  • Basso, T.S., DeBlasio, R., 2004. IEEE 1547 series of standards: interconnection issues. IEEE Trans. Power Electron., 19(5):1159–1162. [doi:10.1109/TPEL.2004.834000]

    Article  Google Scholar 

  • Biswas, S., Goswami, S.K., Chatterjee, A., 2012. Optimum distributed generation placement with voltage sag effect minimization. Energy Conv. Manag., 53(1):163–174. [doi:10.1016/j.enconman.2011.08.020]

    Article  Google Scholar 

  • Carvajal Quintero, S.X., Marin Jimenez, J.D., Arango Aramburo, S., 2012. Feasibility of intentional islanding operation with small hydropower plants. 6th IEEE/PES Transmission and Distribution: Latin America Conf. and Exposition, p.1–6. [doi:10.1109/TDC-LA.2012.6319066]

    Google Scholar 

  • Chen, Y., Xu, Z., Ostergaard, J., 2008. Frequency analysis for planned islanding operation in the Danish distribution system—Bornholm. Proc. 43rd Int. Universities Power Engineering Conf., p.1–5. [doi:10.1109/upec.2008.4651467]

    Google Scholar 

  • Cheng, S., Chen, M.Y., Wai, R.J., et al., 2014. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(4):300–311. [doi:10.1631/jzus.C1300250]

    Article  Google Scholar 

  • Chowdhury, S.P., Chowdhury, S., Crossley, P.A., 2011. UK scenario of islanded operation of active distribution networks with renewable distributed generators. Int. J. Electr. Power Energy Syst., 33(7):1251–1255. [doi:10.1016/j.ijepes.2011.01.004]

    Article  Google Scholar 

  • Ebrahimi, R., Ehsan, M., Nouri, H., 2013. U-shaped energy loss curves utilization for distributed generation optimization in distribution networks. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(11):887–898. [doi:10.1631/jzus.C1200282]

    Article  Google Scholar 

  • EIA, 2009. Total Capacity of Dispersed and Distributed Generators by Technology Type. Technical Report, U.S. Energy Information Administration. Available from http://www.eia.gov/electricity/ [Accessed on Oct. 2, 2013].

    Google Scholar 

  • European Union Commission, 2005. The Support of Electricity from Renewable Energy Sources. European Union Commission Report. Available from http://eur-lex.europa.eu/lexuriserv/lexuriserv.DoUri=com:2005:0627:F in:En:Pdf [Assessed on Oct. 1, 2013].

    Google Scholar 

  • Fuangfoo, P., Lee, W.J., Kuo, M.T., 2007. Impact study on intentional islanding of distributed generation connected to a radial subtransmission system in Thailand’s electric power system. IEEE Trans. Ind. Appl., 43(6):1491–1498. [doi:10.1109/TIA.2007.908184]

    Article  Google Scholar 

  • Golkar, M.A., Hajizadeh, A., 2009. Control strategy of hybrid fuel cell/battery distributed generation system for gridconnected operation. J. Zhejiang Univ.-Sci. A, 10(4):488–496. [doi:10.1631/jzus.A0820151]

    Article  MATH  Google Scholar 

  • Gooding, P.A., Makram, E., Hadidi, R., 2014. Probability analysis of distributed generation for island scenarios utilizing Carolinas data. Electr. Power Syst. Res., 107: 125–132. [doi:10.1016/j.epsr.2013.09.012]

    Article  Google Scholar 

  • Hashim, H., Ho, W.S., 2011. Renewable energy policies and initiatives for a sustainable energy future in Malaysia. Renew. Sustain. Energy Rev., 15(9):4780–4787. [doi:10.1016/j.rser.2011.07.073]

    Article  Google Scholar 

  • IEEE, 2000. IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems. IEEE Std 929-2000.i.

    Google Scholar 

  • IEEE, 2001. IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book). IEEE Std 242–2001 (Revision of IEEE Std 242–1986). [doi:10.1109/ieeestd.2001.93369]

    Google Scholar 

  • IEEE, 2002. IEEE Guide for Protective Relaying of Utility-Consumer Interconnections. IEEE Std C37.95–2002 (Revision of IEEE Std C37.95-1989).0_1. [doi:10.1109/ieeestd.2003.94248]

    Google Scholar 

  • IEEE, 2003. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE Std 1547-2003.1-28. [doi:10.1109/ieeestd.2003.94285]

    Google Scholar 

  • Jenkins, N., Strbac, G., Ekanayake, J., 2010. Distributed Generation. Institute of Energy and Technology (IET).

    Google Scholar 

  • Joshi, K.A., Pindoriya, N.M., 2013. Risk assessment of unintentional islanding in a spot network with roof-top photovoltaic system—a case study in India. IEEE Innovative Smart Grid Technologies — Asia, p.1–6. [doi:10.1109/ISGT-Asia.2013.6698722]

    Google Scholar 

  • Laghari, J.A., Mokhlis, H., Bakar, A.H.A., et al., 2013a. Application of computational intelligence techniques for load shedding in power systems: a review. Energy Conv. Manag., 75:130–140. [doi:10.1016/j.enconman.2013.06.010]

    Article  Google Scholar 

  • Laghari, J.A., Mokhlis, H., Bakar, A.H.A., et al., 2013b. A new islanding detection technique for multiple mini hydro based on rate of change of reactive power and load connecting strategy. Energy Conv. Manag., 76:215–224. [doi:10.1016/j.enconman.2013.07.033]

    Article  Google Scholar 

  • Laghari, J.A., Mokhlis, H., Bakar, A.H.A., et al., 2014. A fuzzy based load frequency control for distribution network connected with mini hydro power plant. J. Intell. Fuzzy Syst., 26(3):1301–1310. [doi:10.3233/ifs-130816]

    Google Scholar 

  • Londero, R.R., Affonso, C.M., Nunes, M.V.A., et al., 2010. Planned islanding for Brazilian system reliability. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.1–6. [doi:10.1109/tdc.2010.5484251]

    Google Scholar 

  • Pahwa, S., Youssef, M., Schumm, P., et al., 2013. Optimal intentional islanding to enhance the robustness of power grid networks. Phys. A, 392(17):3741–3754. [doi:10.1016/j.physa.2013.03.029]

    Article  MathSciNet  Google Scholar 

  • Saadat, H., 1999. Power System Analysis. McGraw-Hill, New York, USA.

    Google Scholar 

  • Silva, M., Morais, H., Vale, Z., 2012. An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation. Energy Conv. Manag., 64:273–288. [doi:10.1016/j.enconman.2012.04.021]

    Article  Google Scholar 

  • Terzija, V.V., 2006. Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation. IEEE Trans. Power Syst., 21(3):1260–1266. [doi:10.1109/TPWRS.2006.879315]

    Article  Google Scholar 

  • UL, 2001. Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources. UL 1741.

    Google Scholar 

  • Vasquez-Arnez, R.L., Ramos, D.S., Carpio-Huayllas, T.E.D., 2014. Microgrid dynamic response during the pre-planned and forced islanding processes involving DFIG and synchronous generators. Int. J. Electr. Power Energy Syst., 62:175–182. [doi:10.1016/j.ijepes.2014.04.044]

    Article  Google Scholar 

  • WADE (World Alliance for Decentralized Energy), 2006. World Survey of Decentralized Energy. Available from http://www.Localpower.Org/documents/report_worldsur vey06.pdf [Accessed on Oct. 2, 2013].

    Google Scholar 

  • Walling, R.A., Miller, N.W., 2002. Distributed generation islanding—implications on power system dynamic performance. IEEE Power Engineering Society Summer Meeting, p.92–96. [doi:10.1109/PESS.2002.1043183]

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mokhlis.

Additional information

Project supported by the Ministry of Higher Education, Malaysia under Research Acculturation Collaborative Effort (Nos. 600-RMI/ RACE 16/6/2 and CR003-2014) and E-Science Fund Research Grant (No. SF005-2013), the University of Malaya and Quaid-e-Awam University of Engineering Science & Technology Nawabshah, Sindh, Pakistan

ORCID: J. A. LAGHARI, http://orcid.org/0000-0003-0781-5432; H. MOKHLIS, http://orcid.org/0000-0002-1166-1934

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghari, J.A., Mokhlis, H., Karimi, M. et al. A new technique for islanding operation of distribution network connected with mini hydro. Frontiers Inf Technol Electronic Eng 16, 418–427 (2015). https://doi.org/10.1631/FITEE.1400309

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400309

Key words

Navigation