Skip to main content
Log in

Energy-aware schedulingwith reconstruction and frequency equalization on heterogeneous systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

With the increasing energy consumption of computing systems and the growing advocacy for green computing, energy efficiency has become one of the critical challenges in high-performance heterogeneous computing systems. Energy consumption can be reduced by not only hardware design but also software design. In this paper, we propose an energy-aware scheduling algorithm with equalized frequency, called EASEF, for parallel applications on heterogeneous computing systems. The EASEF approach aims to minimize the finish time and overall energy consumption. First, EASEF extracts the set of paths from an application. Then, it reconstructs the application based on the extracted set of paths to achieve a reasonable schedule. Finally, it adopts a progressive way to equalize the frequency of tasks to reduce the total energy consumption of systems. Randomly generated applications and two real-world applications are examined in our experiments. Experimental results show that the EASEF algorithm outperforms two existing algorithms in terms of makespan and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amador, E., Knopp, R., Pacalet, R., et al., 2012. Dynamic power management for the iterative decoding of turbo codes. IEEE Trans. VLSI Syst., 20(11):2133–2137. [doi:10.1109/TVLSI.2011.2167765]

    Article  Google Scholar 

  • Bajaj, R., Agrawal, D.P., 2004. Improving scheduling of tasks in a heterogeneous environment. IEEE Trans. Parall. Distr. Syst., 15(2):107–118. [doi:10.1109/TPDS.2004.1264795]

    Article  Google Scholar 

  • Bansal, S., Kumar, P., Singh, K., 2003. An improved duplication strategy for scheduling precedence constrained graphs in multiprocessor systems. IEEE Trans. Parall. Distr. Syst., 14(6):533–544. [doi:10.1109/TPDS.2003.1206502]

    Article  Google Scholar 

  • Bansal, S., Kumar, P., Singh, K., 2005. Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs. J. Parall. Distr. Comput., 65(4):479–491. [doi:10.1016/j.jpdc.2004.11.006]

    Article  MATH  Google Scholar 

  • Benini, L., Bogliolo, A., de Micheli, G., 2000. A survey of design techniques for system-level dynamic power management. IEEE Trans. VLSI Syst., 8(3):299–316. [doi:10.1109/92.845896]

    Article  Google Scholar 

  • Boeres, C., Rebello, V.E.F., 2004. A cluster-based strategy for scheduling task on heterogeneous processors. 16th Symp. on Computer Architecture and High Performance Computing, p.214–221. [doi:10.1109/SBAC-PAD.2004.1]

  • Bozdag, D., Ozguner, F., Catalyurek, U.V., 2009. Compaction of schedules and a two-stage approach for duplication-based DAG scheduling. IEEE Trans. Parall. Distr. Syst., 20(6):857–871. [doi:10.1109/TPDS.2008.260]

    Article  Google Scholar 

  • Brown, R., 2008. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431. Lawrence Berkeley National Laboratory. [doi:10.2172/929723]

  • Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al., 2009. Introduction to Algorithms. MIT Press, Cambridge.

    MATH  Google Scholar 

  • Freund, R.F., Siegel, H.J., 1993. Guest editor’s introduction: heterogeneous processing. Computer, 26(6):13–17.

    Google Scholar 

  • Fu, F.F., Bai, Y.X., Hu, X.A., et al., 2010. An objectiveflexible clustering algorithm for task mapping and scheduling on cluster-based NoC. Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symp. on Laser Physics and Laser Technology Optoelectronics Technology, p.369-373. [doi:10.1109/RCSLPLT.2010.5615317]

  • Hagras, T., Janecek, J., 2005. A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems. Parall. Comput., 31(7):653–670. [doi:10.1016/j.parco.2005.04.002]

    Article  Google Scholar 

  • Huang, Q.J., Su, S., Li, J., et al., 2012. Enhanced energy-efficient scheduling for parallel applications in cloud. 12th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, p.781-786. [doi:10.1109/CCGrid.2012.49]

  • Ilyas, M.U., Khan, S.A., 2001. A clustering heuristic algorithm for scheduling periodic and deterministic tasks on a multiprocessor system. Proc. IEEE Int. Multi Topic Conf., Technology for the 21st Century, p.1-5. [doi:10.1109/INMIC.2001.995305]

  • Iverson, M.A., Özgüner, F., Follen, G.J., 1995. Parallelizing existing applications in a distributed heterogeneous environment. 4th Heterogeneous Computing Workshop, p.93-100.

  • Khan, M.A., 2012. Scheduling for heterogeneous systems using constrained critical paths. Parall. Comput., 38(4-5):175–193. [doi:10.1016/j.parco.2012.01.001]

    Article  Google Scholar 

  • Kim, S.J., Browne, J.C., 1988. A general approach to mapping of parallel computation upon multiprocessor architectures. Int. Conf. on Parallel Processing, 3:1–8.

    Google Scholar 

  • Kwok, Y.K., Ahmad, I., 1996. Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parall. Distr. Syst., 7(5):506–521. [doi:10.1109/71.503776]

    Article  Google Scholar 

  • Kwok, Y.K., Ahmad, I., 1999. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471. [doi:10.1145/344588.344618]

    Article  Google Scholar 

  • Lee, C.H., Shin, K.G., 2004. On-line dynamic voltage scaling for hard real-time systems using the EDF algorithm. 25th IEEE Int. Real-Time Systems Symp., p.319–335. [doi:10.1109/REAL.2004.38]

  • Lee, Y.C., Zomaya, A.Y., 2011. Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parall. Distr. Syst., 22(8):1374–1381. [doi:10.1109/TPDS.2010.208]

    Article  Google Scholar 

  • Li, K.Q., 2012. Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput., 61(12):1668–1681. [doi:10.1109/TC.2012.120]

    Article  MathSciNet  Google Scholar 

  • Mehta, N., Amrutur, B., 2012. Dynamic supply and threshold voltage scaling for CMOS digital circuits using insitu power monitor. IEEE Trans. VLSI Syst., 20(5): 892–901. [doi:10.1109/TVLSI.2011.2132765]

    Article  Google Scholar 

  • Mei, J., Li, K.L., 2012. Energy-aware scheduling algorithm with duplication on heterogeneous computing systems. ACM/IEEE 13th Int. Conf. on Grid Computing, p.122-129. [doi:10.1109/Grid.2012.32]

  • Mishra, R., Rastogi, N., Zhu, D.K., et al., 2003. Energy aware scheduling for distributed real-time systems. Proc. Int. Parallel and Distributed Processing Symp., p.1-9. [doi:10.1109/IPDPS.2003.1213099]

  • Mittal, S., 2014. A survey of techniques for improving energy efficiency in embedded computing systems. Int. J. Comput. Aided Eng. Technol., 6(4):440–459. [doi:10.1504/IJCAET.2014.065419]

    Article  Google Scholar 

  • Piyatamrong, B., Ohara, S., Kantakajorn, S., 2000. GTCS: a greedy task clustering and scheduling algorithm for distributed memory processor architecture. Proc. 4th Int. Conf./Exhibition on High Performance Computing in the Asia-Pacific Region, p.310-314. [doi:10.1109/HPC.2000.846567]

  • Sih, G.C., Lee, E.A., 1993. A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans. Parall. Distr. Syst., 4(2):175–187. [doi:10.1109/71.207593]

    Article  Google Scholar 

  • Tang, X.Y., Li, K.L., Liao, G.P., et al., 2010. List scheduling with duplication for heterogeneous computing systems. J. Parall. Distr. Comput., 70(4):323–329. [doi:10.1016/j.jpdc.2010.01.003]

    Article  MATH  Google Scholar 

  • Terzopoulos, G., Karatza, H.D., 2013. Dynamic voltage scaling scheduling on power-aware clusters under power constraints. IEEE/ACM 17th Int. Symp. on Distributed Simulation and Real Time Applications, p.72-78. [doi:10.1109/DS-RT.2013.16]

  • Topcuoglu, H., Hariri, S., Wu, M.Y., 2002. Performanceeffective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parall. Distr. Syst., 13(3):260–274. [doi:10.1109/71.993206]

    Article  Google Scholar 

  • Ullman, J.D., 1975. NP-complete scheduling problems. J. Comput. Syst. Sci., 10(3):384–393. [doi:10.1016/S0022-0000(75)80008-0]

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L.Z., Khan, S.U., Chen, D., et al., 2013. Energyaware parallel task scheduling in a cluster. Fut. Gener. Comput. Syst., 29(7):1661–1670. [doi:10.1016/j.future.2013.02.010]

    Article  Google Scholar 

  • Yang, T., Gerasoulis, A., 1994. DSC: scheduling parallel tasks on an unbounded number of processors. IEEE Trans. Parall. Distr. Syst., 5(9):951–967. [doi:10.1109/71.308533]

    Article  Google Scholar 

  • Zhu, X.M., He, C., Li, K.L., et al., 2012. Adaptive energyefficient scheduling for real-time tasks on DVS-enabled heterogeneous clusters. J. Parall. Distr. Comput., 72(6):751–763. [doi:10.1016/j.jpdc.2012.03.005]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-li Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61133005, 61432005, 61370095, 61472124, and 61402400)

ORCID: Yong-xing LIU, http://orcid.org/0000-0001-8935-9543

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yx., Li, Kl., Tang, Z. et al. Energy-aware schedulingwith reconstruction and frequency equalization on heterogeneous systems. Frontiers Inf Technol Electronic Eng 16, 519–531 (2015). https://doi.org/10.1631/FITEE.1400399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400399

Keywords

CLC number

Navigation