Skip to main content
Log in

End-to-end delay analysis for networked systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

End-to-end delay measurement has been an essential element in the deployment of real-time services in networked systems. Traditional methods of delay measurement based on time domain analysis, however, are not efficient as the network scale and the complexity increase. We propose a novel theoretical framework to analyze the end-to-end delay distributions of networked systems from the frequency domain. We use a signal flow graph to model the delay distribution of a networked system and prove that the end-to-end delay distribution is indeed the inverse Laplace transform of the transfer function of the signal flow graph. Two efficient methods, Cramer’s rule-based method and the Mason gain rule-based method, are adopted to obtain the transfer function. By analyzing the time responses of the transfer function, we obtain the end-to-end delay distribution. Based on our framework, we propose an efficient method using the dominant poles of the transfer function to work out the bottleneck links of the network. Moreover, we use the framework to study the network protocol performance. Theoretical analysis and extensive evaluations show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelzaher, T.F., Prabh, S., Kiran, R., 2004. On real-time capacity limits of multihop wireless sensor networks. Proc. 25th IEEE Int. Real-Time Systems Symp., p.359–370. [doi:10.1109/REAL.2004.37]

    Google Scholar 

  • Almeida, L., Fonseca, P., Fonseca, J.A., et al., 1999. Scheduling and clock synchronization in CAN-based distributed systems. Proc. Int. CAN Conf., p.1–9.

    Google Scholar 

  • Bakshi, B.S., Krishna, P., Vaidya, N.H., et al., 1997. Improving performance of TCP over wireless networks. Proc. 17th Int. Conf. on Distributed Computing Systems, p.365–373. [doi:10.1109/ICDCS.1997.598070]

    Google Scholar 

  • Balakrishnan, H., Padmanabhan, V.N., Seshan, S., et al., 1997. A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Trans. Netw., 5(6):756–769. [doi:10.1109/90.650137]

    Article  Google Scholar 

  • Bauer, H., Scharbarg, J., Fraboul, C., 2010. Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach. IEEE Trans. Ind. Inform., 6(4):521–533. [doi:10.1109/TII.2010.2055877]

    Article  Google Scholar 

  • Bisnik, N., Abouzeid, A.A., 2009. Queuing network models for delay analysis of multihop wireless ad hoc networks. Ad Hoc Netw., 7(1):79–97. [doi:10.1016/j.adhoc.2007.12.001]

    Article  Google Scholar 

  • Bolot, J.C., 1993. End-to-end packet delay and loss behavior in the Internet. ACM SIGCOMM Comput. Commun. Rev., 23(4):289–298. [doi:10.1145/167954.166265]

    Article  Google Scholar 

  • Boorstyn, R.R., Burchard, A., Liebeherr, J., et al., 2000. Statistical service assurances for traffic scheduling algorithms. IEEE J. Sel. Areas Commun., 18(12):2651–2664. [doi:10.1109/49.898747]

    Article  Google Scholar 

  • Burchard, A., Liebeherr, J., Patek, S.D., 2006. A minplus calculus for end-to-end statistical service guarantees. IEEE Trans. Inform. Theory, 52(9):4105–4114. [doi:10.1109/TIT.2006.880019]

    Article  MATH  MathSciNet  Google Scholar 

  • Chakravorty, R., Katti, S., Crowcroft, J., et al., 2003. Flow aggregation for enhanced TCP over wide-area wireless. Proc. 22nd Annual Joint Conf. of the IEEE Computer and Communications, p.1754–1764. [doi:10.1109/INFCOM.2003.1209198]

    Google Scholar 

  • Choe, J., Shroff, N.B., 1998. A central-limit-theorem-based approach for analyzing queue behavior in high-speed networks. IEEE/ACM Trans. Netw., 6(5):659–671. [doi:10.1109/90.731205]

    Article  Google Scholar 

  • Cruz, R.L., 1991a. A calculus for network delay, part I: network elements in isolation. IEEE Trans. Inform. Theory, 37(1):114–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Cruz, R.L., 1991b. A calculus for network delay, part II: network analysis. IEEE Trans. Inform. Theory, 37(1): 132–141.

    Article  MATH  MathSciNet  Google Scholar 

  • D’Azzo, J., Houpis, C., 1995. Linear Control System Analysis and Design: Conventional and Modern. McGraw-Hill Higher Education, USA.

  • Despaux, F., Song, Y.Q., Lahmadi, A., 2012. Combining analytical and simulation approaches for estimating end-to-end delay in multi-hop wireless networks. Proc. IEEE 8th Int. Conf. on Distributed Computing in Sensor Systems, p.317–322. [doi:10.1109/DCOSS.2012.31]

    Google Scholar 

  • El-Hajj, A., Kabalan, K.Y., 1995. A transfer function computational algorithm for linear control systems. IEEE Contr. Syst., 15(2):114–118. [doi:10.1109/37.375319]

    Article  Google Scholar 

  • Exel, R., Bigler, T., Sauter, T., 2014. Asymmetry mitigation in IEEE 802.3 Ethernet for high-accuracy clock synchronization. IEEE Trans. Instrum. Meas., 63(3):729–736. [doi:10.1109/TIM.2013.2280489]

    Article  Google Scholar 

  • Fidler, M., 2010. Survey of deterministic and stochastic service curve models in the network calculus. IEEE Commun. Surv. Tutor., 12(1):59–86. [doi:10.1109/SURV.2010.020110.00019]

    Article  Google Scholar 

  • Gupta, G.R., Shroff, N., 2009. Delay analysis for multihop wireless networks. IEEE INFOCOM, p.2356–2364. [doi:10.1109/INFCOM.2009.5062162]

    Google Scholar 

  • He, W., Liu, X., Zheng, L., et al., 2010. Reliability calculus: a theoretical framework to analyze communication reliability. Proc. IEEE 30th Int. Conf. on Distributed Computing Systems, p.159–168. [doi:10.1109/ICDCS. 2010.73]

    Google Scholar 

  • Heimlicher, S., Nuggehalli, P., May, M., 2007. End-to-end vs. hop-by-hop transport. SIGMETRICS Perform. Eval. Rev., 35(3):59–60.

    Article  Google Scholar 

  • Koubaa, A., Alves, M., Tovar, E., 2006. Modeling and worst-case dimensioning of cluster-tree wireless sensor networks. Proc. 27th IEEE Int. Real-Time Systems Symp., p.412–421. [doi:10.1109/RTSS.2006.29]

    Google Scholar 

  • Li, Y., Chen, C.S., Song, Y.Q., et al., 2009. Enhancing realtime delivery in wireless sensor networks with two-hop information. IEEE Trans. Ind. Inform., 5(2):113–122. [doi:10.1109/TII.2009.2017938]

    Article  Google Scholar 

  • Paxson, V., 1997. End-to-end Internet packet dynamics. ACM SIGCOMM Comput. Commun. Rev., 27(4):139–152. [doi:10.1145/263109.263155]

    Article  Google Scholar 

  • Qiu, J.Y., Knightly, E.W., 1999. Inter-class resource sharing using statistical service envelopes. Proc. 18th Annual Joint Conf. of the IEEE Computer and Communications Societies, p.1404–1411. [doi:10.1109/INFCOM. 1999.752160]

    Google Scholar 

  • Rao, L., Liu, X., Xie, L., et al., 2010. Minimizing electricity cost: optimization of distributed Internet data centers in a multi-electricity-market environment. Proc. IEEE INFOCOM, p.1–9. [doi:10.1109/INFCOM.2010. 5461933]

    Google Scholar 

  • Reisslein, M., Ross, K.W., Rajagopal, S., 2002. A framework for guaranteeing statistical QoS. IEEE/ACM Trans. Netw., 10(1):27–42. [doi:10.1109/90.986511]

    Article  Google Scholar 

  • Schmitt, J.B., Zdarsky, F.A., Thiele, L., 2007. A comprehensive worst-case calculus for wireless sensor networks with in-network processing. Proc. 28th IEEE Int. Real-Time Systems Symp., p.193–202. [doi:10.1109/RTSS.2007.17]

    Google Scholar 

  • Wang, Z., Liao, J., Cao, Q., et al., 2014. Achieving k-barrier coverage in hybrid directional sensor networks. IEEE Trans. Mob. Comput., 13(7):1443–1455. [doi:10.1109/ TMC.2013.118]

    Article  Google Scholar 

  • Xia, F., Vinel, A., Gao, R., et al., 2011. Evaluating IEEE 802.15.4 for cyber-physical systems. EURASIP J. Wirel. Commun. Netw., arXiv:1312.6837.

    Google Scholar 

  • Xie, M., Haenggi, M., 2009. Towards an end-to-end delay analysis of wireless multihop networks. Ad Hoc Netw., 7(5):849–861. [doi:10.1016/j.adhoc.2008.04.010]

    Article  Google Scholar 

  • Yao, J., Liu, X., Zhu, G., et al., 2013. NetSimplex: controller fault tolerance architecture in networked control systems. IEEE Trans. Ind. Inform., 9(1):346–356. [doi:10.1109/TII.2012.2219060]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61273079 and 61502352), the Key Laboratory of Wireless Sensor Network & Communication of Chinese Academy of Sciences (No. WSNC2014001), the Open Research Project of the State Key Lab of Industrial Control Technology, Zhejiang University (Nos. ICT1541 and ICT1555), the Natural Science Foundation of Hubei Province, China (No. 2015CFB203), and the Natural Science Foundation of Jiangsu Province, China (No. BK20150383)

ORCID: Jie SHEN, http://orcid.org/0000-0003-4391-813X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., He, Wb., Liu, X. et al. End-to-end delay analysis for networked systems. Frontiers Inf Technol Electronic Eng 16, 732–743 (2015). https://doi.org/10.1631/FITEE.1400414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400414

Keywords

CLC number

Navigation