Skip to main content
Log in

Moving target detection in the cepstrum domain for passive coherent location (PCL) radar

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A cepstrum moving target detection (CEPMTD) algorithm based on cepstrum techniques is proposed for passive coherent location (PCL) radar systems. The primary cepstrum techniques are of great success in recognizing the arrival times of static target echoes. To estimate the Doppler frequencies of moving targets, we divide the radar data into a large number of segments, and reformat these segments into a detection matrix. Applying the cepstrum and the Fourier transform to the fast and slow time dimensions respectively, we can obtain the range information and Doppler information of the moving targets. Based on the CEPMTD outlined above, an improved CEPMTD algorithm is proposed to improve the detection performance. Theoretical analyses show that only the target’s peak can be coherently added. The performance of the improved CEPMTD is initially validated by simulations, and then by experiments. The simulation results show that the detection performance of the improved CEPMTD algorithm is 13.3 dB better than that of the CEPMTD algorithm and 6.4 dB better than that of the classical detection algorithm based on the radar cross ambiguity function (CAF). The experiment results show that the detection performance of the improved CEPMTD algorithm is 1.63 dB better than that of the radar CAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andric, M.S., Bujakovic, D.M., Bondzulic, B.P., et al., 2011. Cepstrum-based analysis of radar Doppler signals. Proc. 10th Int. Conf. on Telecommunication in Modern Satellite Cable and Broadcasting Services, p.575–578. [doi:10.1109/TELSKS.2011.6143180]

    Google Scholar 

  • Axelsson, S.R.J., 2004. Noise radar using random phase and frequency modulation. IEEE Trans. Geosci. Remote Sens., 42(11):2370–2384. [doi:10.1109/TGRS.2004.834589]

    Article  Google Scholar 

  • Bogert, B.P., Healy, M.J.R., Tukey, J.W., 1963. The quefrency analysis of time series for echoes: cepstrum, pseudoautocovariance, cross-cepstrum and saphe cracking. Proc. Symp. on Time Series Analysis, p.209–243.

    Google Scholar 

  • Cherniakov, M., 2008. Bistatic Radars: Emerging Technology. John Wiley & Sons, Inc., UK.

    Book  Google Scholar 

  • Hansson-Sandsten, M., Axmon, J., 2007. Multiple-window cepstrum analysis for estimation of periodicity. IEEE Trans. Signal Process., 55(2):474–481. [doi:10.1109/TSP.2006.885759]

    Article  MathSciNet  Google Scholar 

  • Kemerait, R., Childers, D.G., 1972. Signal detection and extraction by cepstrum techniques. IEEE Trans. Inform. Theory, 18(6):745–759. [doi:10.1109/TIT.1972.1054926]

    Article  Google Scholar 

  • Kim, H.K., Rose, R.C., 2003. Cepstrum-domain acoustic feature compensation based on decomposition of speech and noise for ASR in noisy environments. IEEE Trans. Speech Audio Process., 11(5):435–446. [doi:10.1109/ TSA.2003.815515]

    Article  Google Scholar 

  • Kim, H.K., Rose, R.C., 2009. Cepstrum-domain model combination based on decomposition of speech and noise using MMSE-LSA for ASR in noisy environments. IEEE Trans. Audio Speech Lang. Process., 17(4):704–713. [doi:10.1109/TASL.2008.2012319]

    Article  Google Scholar 

  • Li, J., Lu, X., Zhao, Y., 2012. A novel algorithm for side peaks suppression of ambiguity function for passive radar based on Chinese DTTB signal. J. Electron. (China), 29(6): 485–492. [doi:10.1007/s11767-012-0912-x]

    Article  Google Scholar 

  • Li, J., Zhao, Y., Lu, X., dy2013. The impact of step selection in NLMS algorithm on low velocity target detecting for passive radar. Proc. IET Int. Radar Conf. [doi:10.1049/cp.2013.0359]

  • Malanowski, M., Kulpa, K., Kulpa, J., et al., 2014. Analysis of detection range of FM-based passive radar. IET Radar Sonar Navig., 8(2):153–159. [doi:10.1049/iet-rsn.2013.0185]

    Article  Google Scholar 

  • Noll, A.M., 1964. Short-time spectrum and “Cepstrum” techniques for vocal-pitch detection. J. Acoust. Soc. Am., 36(2):296–302. [doi:10.1121/1.1918949]

    Article  MathSciNet  Google Scholar 

  • Noll, A.M., 1967. Cepstrum pitch determination. J. Acoust. Soc. Am., 41(2):293–309. [doi:10.1121/1.1910339]

    Article  MathSciNet  Google Scholar 

  • Olivadese, D., Giusti, E., Petri, D., et al., 2013. Passive ISAR with DVB-T signals. IEEE Trans. Geosci. Remote Sens., 51(8):4508–4517. [doi:10.1109/TGRS.2012.2236339]

    Article  Google Scholar 

  • Oppenheim, A.V., 1965. Superposition in a Class of Nonlinear Systems. PhD Thesis, MIT Research Laboratory of Electronics, Cambridge, USA.

    Google Scholar 

  • Oppenheim, A.V., Schafer, R.W., 2004. From frequency to quefrency: a history of the cepstrum. IEEE Signal Process. Mag., 21(5):95–106. [doi:10.1109/MSP.2004.1328092]

    Article  Google Scholar 

  • Palmer, J.E., Harms, H.A., Searle, S.J., et al., 2013. DVB-T passive radar signal processing. IEEE Trans. Signal Process., 61(8):2116–2126. [doi:10.1109/TSP.2012.2236324]

    Article  Google Scholar 

  • Schafer, R.W., 1969. Echo Removal by Discrete Generalized Linear Filtering. Technical Report, MIT Research Laboratory of Electronics, Cambridge, USA.

    Google Scholar 

  • Sinsky, A.I., Wang, C., 1974. Standardization of the definition of the radar ambiguity function. IEEE Trans. Aerosp. Electron. Syst., AES-10(4):532–533. [doi:10.1109/TAES. 1974.307831]

    Article  Google Scholar 

  • Stoffa, P.L., Buhl, P., Bryan, G.M., 1974. The application of homomorphic deconvolution to shallow-water marine seismology—Part I: models. Geophysics, 39(4):401–416. [doi:10.1190/1.1440438]

    Article  Google Scholar 

  • Thomas, J.M., Griffiths, H.D., Baker, C.J., 2006. Ambiguity function analysis of digital radio mondiale signals for HF passive bistatic radar. Electron. Lett., 42(25):1482–1483. [doi:10.1049/el:20062896]

    Article  Google Scholar 

  • Tsai, W.H., Lin, H.P., 2011. Background music removal based on cepstrum transformation for popular singer identification. IEEE Trans. Audio Speech Lang. Process., 19(5): 1196–1205. [doi:10.1109/TASL.2010.2087752]

    Article  Google Scholar 

  • Ulrych, T.J., 1971. Application of homomorphic deconvolution to seismology. Geophysics, 36(4):650–660. [doi:10. 1190/1.1440202]

    Article  Google Scholar 

  • Yan, H., Shen, G., Zetik, R., et al., 2013. Ultra-wideband MIMO ambiguity function and its factorability. IEEE Trans. Geosci. Remote Sens., 51(1):504–519. [doi:10. 1109/TGRS.2012.2201486]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-chuan Li.

Additional information

ORCID: Ji-chuan LI, http://orcid.org/0000-0003-0314-4475

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jc., Lu, Xd., Zhang, H. et al. Moving target detection in the cepstrum domain for passive coherent location (PCL) radar. Frontiers Inf Technol Electronic Eng 16, 785–795 (2015). https://doi.org/10.1631/FITEE.1500036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500036

Keywords

CLC number

Navigation