Skip to main content

Advertisement

Log in

Automatically building large-scale named entity recognition corpora from Chinese Wikipedia

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Named entity recognition (NER) is a core component in many natural language processing applications. Most NER systems rely on supervised machine learning methods, which depend on time-consuming and expensive annotations in different languages and domains. This paper presents a method for automatically building silver-standard NER corpora from Chinese Wikipedia. We refine novel and language-dependent features by exploiting the text and structure of Chinese Wikipedia. To reduce tagging errors caused by entity classification, we design four types of heuristic rules based on the characteristics of Chinese Wikipedia and train a supervised NE classifier, and a combined method is used to improve the precision and coverage. Then, we realize type identification of implicit mention by using boundary information of outgoing links. By selecting the sentences related with the domains of test data, we can train better NER models. In the experiments, large-scale NER corpora containing 2.3 million sentences are built from Chinese Wikipedia. The results show the effectiveness of automatically annotated corpora, and the trained NER models achieve the best performance when combining our silver-standard corpora with gold-standard corpora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alotaibi, F., Lee, M., 2012. Mapping Arabic Wikipedia into the named entities taxonomy. Proc. 24th Int. Conf. on Computational Linguistics, p.43–52.

    Google Scholar 

  • An, J., Lee, S., Lee, G.G., 2003. Automatic acquisition of named entity tagged corpus from World Wide Web. Proc. 41st Annual Meeting on Association for Computational Linguistics, p.165–168. [doi:10.3115/1075178.1075207]

    Google Scholar 

  • Auer, S., Bizer, C., Kobilarov, G., et al., 2007. DBpedia: a nucleus for a Web of open data. LNCS, 4825:722–735. [doi:10.1007/978–3-540–76298-0_52]

    Google Scholar 

  • Balasuriya, D., Ringland, N., Nothman, J., et al., 2009. Named entity recognition in Wikipedia. Proc. Workshop on the People’s Web Meets NLP, ACL-IJCNLP, p.10–18.

    Google Scholar 

  • Bunescu, R., Pasca, M., 2006. Using encyclopedic knowledge for named entity disambiguation. Proc. 11th Conf. of the European Chapter of the Association for Computational Linguistics, p.9–16.

    Google Scholar 

  • Carletta, J., 1996. Assessing agreement on classification tasks: the kappa statistic. Comput. Ling., 22(2):249–254.

    Google Scholar 

  • Ciaramita, M., Altun, Y., 2005. Named-entity recognition in novel domains with external lexical knowledge. Proc. Human Language Technologies in Advances in Structured Learning for Text and Speech Processing Workshop, p.209–212.

    Google Scholar 

  • Dakka, W., Cucerzan, S., 2008. Augmenting Wikipedia with named entity tags. Proc. Int. Joint Conf. on Natural Language Processing, p.545–552.

    Google Scholar 

  • Darwish, K., 2013. Named entity recognition using crosslingual resources: Arabic as an example. Proc. 51st Annual Meeting of the Association for Computational Linguistics, p.1558–1567.

    Google Scholar 

  • Ehrmann, M., Turchi, M., 2010. Building multilingual named entity annotated corpora exploiting parallel corpora. Proc. Workshop on Annotation and Exploitation of Parallel Corpora, p.24–33.

    Google Scholar 

  • Etzioni, O., Cafarella, M., Downey, D., et al., 2005. Unsupervised named-entity extraction from the Web: an experimental study. Artif. Intell., 165(1):91–134. [doi:10.1016/j. artint.2005.03.001]

    Article  Google Scholar 

  • Fu, R., Qin, B., Liu, T., 2011. Generating Chinese named entity data from a parallel corpus. Proc. 5th Int. Joint Conf. on Natural Language Processing, p.264–272.

    Google Scholar 

  • Gabrilovich, E., Markovitch, S., 2007. Computing semantic relatedness using Wikipedia-based explicit semantic analysis. Proc. 20th Int. Joint Conf. on Artificial Intelligence, p.1606–1611.

    Google Scholar 

  • Guo, H., Zhu, H., Guo, Z., et al., 2009. Domain adaptation with latent semantic association for named entity recognition. Proc. Human Language Technologies: the Annual Conf. of the North American Chapter of the ACL, p.281–289.

    Google Scholar 

  • Higashinaka, R., Sadamitsu, K., Saito, K., et al., 2012. Creating an extended named entity dictionary from Wikipedia. Proc. 24th Int. Conf. on Computational Linguistics, p.1163–1178.

    Google Scholar 

  • Ji, H., Grishman, R., Dang, H.T., 2011. Overview of the TAC2011 Knowledge Base Population Track. Proc. Text Analysis Conf.

    Google Scholar 

  • Jiang, J., Zhai, C.X., 2006. Exploiting domain structure for named entity recognition. Proc. Main Conf. on Human Language Technology Conf. of the North American Chapter of the Association of Computational Linguistics, p.74–81. [doi:10.3115/1220835.1220845]

    Google Scholar 

  • Jiang, J., Zhai, C.X., 2007. A two-stage approach to domain adaptation for statistical classifiers. Proc. 16th ACM Conf. on Information and Knowledge Management, p.401–410. [doi:10.1145/1321440.1321498]

    Google Scholar 

  • Liao, W., Veeramachaneni, S., 2009. A simple semisupervised algorithm for named entity recognition. Proc. NAACL HLT Workshop on Semi-Supervised Learning for Natural Language Processing, p.58–65.

    Chapter  Google Scholar 

  • Liu, H., Chen, Y., 2010. Computing semantic relatedness between named entities using Wikipedia. Proc. Int. Conf. on Artificial Intelligence and Computational Intelligence, p.388–392. [doi:10.1109/AICI.2010.88]

    Google Scholar 

  • Liu, X., Zhang, S., Wei, F., et al., 2011. Recognizing named entities in Tweets. Proc. 49th Annual Meeting of the Association for Computational Linguistics, p.359–367.

    Google Scholar 

  • Medelyan, O., Milne, D., Legg, C., et al., 2009. Mining meaning from Wikipedia. Int. J. Human-Comput. Stud., 67(9):716–754. [doi:10.1016/jijhcs.2009.05.004]

    Article  Google Scholar 

  • Mika, P., Ciaramita, M., Zaragoza, H., et al., 2008. Learning to tag and tagging to learn: a case study on Wikipedia. IEEE Intell. Syst., 23(5):26–33. [doi:10.1109/MIS.2008.85]

    Article  Google Scholar 

  • Nadeau, D., Turney, P.D., Matwin, S., 2006. Unsupervised named entity recognition: generating gazetteers and resolving ambiguity. LNCS, 4013:266–277. [doi:10.1007/ 11766247_23]

    MathSciNet  Google Scholar 

  • Nastase, V., Strube, M., 2013. Transforming Wikipedia into a large scale multilingual concept network. Artif. Intell., 194:62–85. [doi:10.1016/jartint.2012.06.008]

    Article  MATH  MathSciNet  Google Scholar 

  • Nemeskey, D.M., Simon, E., 2012. Automatically generated NE tagged corpora for English and Hungarian. Proc. 4th Named Entity Workshop, p.38–46.

    Google Scholar 

  • Ni, Y., Zhang, L., Qiu, Z., et al., 2010. Enhancing the opendomain classification of named entity using linked open data. Proc. 9th Int. Semantic Web Conf., p.566–581.

    Google Scholar 

  • Nothman, J., Curran, J.R., Murphy, T., 2008. Transforming Wikipedia into named entity training data. Proc. Australian Language Technology Workshop, p.124–132.

    Google Scholar 

  • Nothman, J., Ringland, N., Radford, W., et al., 2013. Learning multilingual named entity recognition from Wikipedia. Artif. Intell., 194:151–175. [doi:10.1016/jartint.2012.03. 006]

    Article  MATH  MathSciNet  Google Scholar 

  • Ratinov, L., Roth, D., 2009. Design challenges and misconceptions in named entity recognition. Proc. 13th Conf. on Computational Natural Language Learning, p.147–155. [doi:10.3115/1596374.1596399]

    Google Scholar 

  • Richman, A.E., Schone, P., 2008. Mining Wiki resources for multilingual named entity recognition. Proc. 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, p.1–9.

    Google Scholar 

  • Toral, A., Ferrández, S., Monachini, M., et al., 2012. Web 2.0, language resources and standards to automatically build a multilingual named entity lexicon. Lang. Res. Eval., 46(3):383–419. [doi:10.1007/s10579–011-9148-x]

    Article  Google Scholar 

  • Zesch, T., Müller, C., Gurevych, I., 2008. Extracting lexical semantic knowledge from Wikipedia and Wiktionary. Proc. Conf. on Language Resources and Evaluation, p.1646–1651.

    Google Scholar 

  • Zhang, W., Sun, L., Zhang, X., 2012. A entity relation extraction method based on Wikipedia and pattern clustering. J. Chin. Inform. Process., 26(2):75–81 (in Chinese).

    Google Scholar 

  • Zhou, J., Dai, X., Yin, C., et al., 2006. Automatic recognition of Chinese organization name based on cascaded conditional random fields. Acta Electron. Sin., 34(5):804–809 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Additional information

Project supported by the National Natural Science Foundation of China (No. 14BXW028)

ORCID: Jie ZHOU, http://orcid.org/0000-0001-5615-9334

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Li, Bc. & Chen, G. Automatically building large-scale named entity recognition corpora from Chinese Wikipedia. Frontiers Inf Technol Electronic Eng 16, 940–956 (2015). https://doi.org/10.1631/FITEE.1500067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500067

Key words

CLC number