Skip to main content
Log in

A reversibility-gain model for integer Karhunen-Loève transform design in video coding

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Karhunen-Loève transform (KLT) is the optimal transform that minimizes distortion at a given bit allocation for Gaussian source. As a KLT matrix usually contains non-integers, integer-KLT design is a classical problem. In this paper, a joint reversibility-gain (R-G) model is proposed for integer-KLT design in video coding. Specifically, the ‘reversibility’ is modeled according to distortion analysis in using forward and inverse integer transform without quantization. It not only measures how invertible a transform is, but also bounds the distortion introduced by the non-orthonormal integer transform process. The ‘gain’ means transform coding gain (TCG), which is a widely used criterion for transform design in video coding. Since KLT maximizes the TCG under some assumptions, here we define the TCG loss ratio (LR) to measure how much coding gain an integer-KLT loses when compared with the original KLT. Thus, the R-G model can be explained as follows: subject to a certain TCG LR, an integer- KLT with the best reversibility is the optimal integer transform for a given non-integer-KLT. Experimental results show that the R-G model can guide the design of integer-KLTs with good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, N., Natarajan, T., Rao, K.R., 1974. Discrete cosine transform. IEEE Trans. Comput., 23(1):90–93. [doi:10.1109/T-C.1974.223784]

    Article  MathSciNet  MATH  Google Scholar 

  • Bjontegaard, G., 2001. Calculation of Average PSNR Differences Between RD-Curves. Doc. VCEG-M33 ITU-T Q6/16, Austin, Texas, USA.

    Google Scholar 

  • Chen, J., 2012. Reconstruction Image Distortion Model Considering the Quality of Reference Frame in Video Coding. MS Thesis, Zhejiang University, Hangzhou, China (in Chinese).

    Google Scholar 

  • Dong, J., Ngan, K.N., Fong, C.K., et al., 2009. 2-D order-16 integer transforms for HD video coding. IEEE Trans. Circ. Syst. Video Technol., 19(10):1462–1474. [doi:10.1109/TCSVT.2009.2026792]

    Article  Google Scholar 

  • Goyal, V.K., 2000. High-rate transform coding: how high is high, and does it matter? Proc. IEEE Int. Symp. on Information Theory, p.207. [doi:10.1109/ISIT.2000.866505]

    Google Scholar 

  • Goyal, V.K., 2001. Theoretical foundations of transform coding. IEEE Signal Process. Mag., 18(5):9–21. [doi:10.1109/79.952802]

    Google Scholar 

  • Han, J., Saxena, A., Melkeote, V., et al., 2012. Jointly optimized spatial prediction and block transform for video and image coding. IEEE Trans. Image Process., 21(4):1874–1884. [doi:10.1109/TIP.2011.2169976]

    Article  MathSciNet  Google Scholar 

  • Hinds, A.T., Reznik, Ya.., Yu, L., et al., 2007. Drift analysis for integer IDCT. SPIE, 6696:14.1–14.16. [doi:10.1117/12.740220]

    Google Scholar 

  • Jayant, N.S., Noll, P., 1984. Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice-Hall, USA.

    Google Scholar 

  • Saxena, A., Fernandes, F.C., 2013. Low latency secondary transforms for intra/inter prediction residual. IEEE Trans. Image Process., 22(10):4061–4071. [doi:10.1109/TIP.2013.2270087]

    Article  MathSciNet  Google Scholar 

  • Wiegand, T., 2001. H.26L Test Model Long-Term Number 9 (TML-9) draft0. Doc. VCEG-N83 ITU-T Q6/16, Santa Barbara, CA, USA.

    Google Scholar 

  • Ye, Y., Karczewicz, M., 2008. Improved H.264 intra coding based on bi-directional intra prediction, directional transform, and adaptive coefficient scanning. Proc. 15th IEEE Int. Conf. on Image Processing, p.2116–2119. [doi:10.1109/ICIP.2008.4712205]

    Google Scholar 

  • Yeo, C., Tan, Y.H., Li, Z., et al., 2011. Mode-dependent transform for coding directional intra prediction residuals. IEEE Trans. Circ. Syst. Video Technol., 22(4):545–554. [doi:10.1109/TCSVT.2011.2168291]

    Article  Google Scholar 

  • Zhang, C., Wang, J., Yu, L., 2006. Systematic approach of fixed point 8?8 IDCT and DCT design and implementation. Proc. Picture Coding Symp., p.1–6.

    Google Scholar 

  • Zhao, X., Zhang, L., Ma, S., et al., 2011. Video coding with rate-distortion optimized transform. IEEE Trans. Circ. Syst. Video Technol., 22(1):138–151. [doi:10.1109/TCSVT.2011.2158363]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61371162 and 61431015)

ORCID: Xing-guo ZHU, http://orcid.org/0000-0002-6319-2471

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Xg., Yu, L. A reversibility-gain model for integer Karhunen-Loève transform design in video coding. Frontiers Inf Technol Electronic Eng 16, 883–891 (2015). https://doi.org/10.1631/FITEE.1500071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500071

Keywords

Document code

CLC number

Navigation