Abstract
Traditional CMOS technology faces some fundamental physical limitations. Therefore, it has become very important for the integrated circuit industry to continue to develop modern devices and new design methods. The threshold logic gate has attracted much attention because of its powerful logic function. The resonant tunneling diode (RTD) is well suited for implementing the threshold logic gate because of its high-speed switching capability, negative differential resistance (NDR) characteristic, and functional versatility. In this paper, based on the Reed-Muller (RM) algebraic system, a novel method is proposed to convert three-variable non-threshold functions to the XOR of multiple threshold functions, which is simple and has a programmable implementation. With this approach, all three-variable non-threshold functions can be presented by the XOR of two threshold functions, except for two special functions. On this basis, a novel three-variable universal logic gate (ULG3) is proposed, composed of two RTD-based universal threshold logic gates (UTLG) and an RTD-based three-variable XOR gate (XOR3). The ULG3 has a simple structure, and a simple method is presented to implement all three-variable functions using one ULG3. Thus, the proposed ULG3 provides a new efficient universal logic gate to implement RTD-based arbitrary n-variable functions.
Similar content being viewed by others
References
Bawiec, M.A., Nikodem, M., 2009. Boolean logic function synthesis for generalized threshold gate circuits. Proc. 46th Annual Design Automation Conf., p.83–86. [doi:10.1145/1629911.1629935]
Beiu, V., Quintana, J.M., Avedillo, M.J., 2003. VLSI implementations of threshold logic—a comprehensive survey. IEEE Trans. Neur. Netw., 14(5):1217–1243. [doi:10.1109/TNN.2003.816365]
Chen, K.J., Akeyoshi, T., Maezawa, K., 1995. Monostablebistable transition logic elements (MOBILEs) based on monolithic integration of resonant tunneling diodes and FETs. Jpn. J. Appl. Phys., 34(2B):1199–1203. [doi:10.1143/JJAP.34.1199]
Chen, X., Hurst, S.L., 1981. A consideration of the minimum number of input terminals on universal logic gates and their realization. Int. J. Electron., 50(1):1–13. [doi:10.1080/00207218108901215]
Hurst, S.L., 1978. The Logical Processing of Digital Signals. Crane Russak & Co. USA.
Hurst, S.L., Muzio, J.C., Miller, D.M., 1985. Spectral Techniques in Digital Logic. Academic Press USA.
Kodandapani, K.L., Setlur, R.V., 1997. A note on minimal Reed-Muller canonical forms of switching functions. IEEE Trans. Comput., C-26(3):310–313. [doi:10.1109/TC.1977.1674830]
Lechner, R.J., 1971. Harmonic analysis of switching functions. In: Mukhopadhyay, A. (Ed.), Recent Developments in Switching Theory. Academic Press USA, p.121–228.
Lee, J., Choi, S., Yang, K., 2010. A new low-power RTD-based 4:1 multiplexer IC using an InP RTD/HBT MMIC technoligy. Proc. Int. Conf. on Indium Phosphide & Related Materials, p.1–3. [doi:10.1109/ICIPRM.2010.5516385]
Likharev, K.K., 2008. Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Optoelectron., 3(3):203–230. [doi:10.1166/jno.2008.301]
Mazumder, P., Kulkarni, S., Bhattacharya, M., et al., 1998. Digital circuit applications of resonant tunneling devices. Proc. IEEE, 86(4):664–686. [doi:10.1109/5.663544]
Mirhoseini, S.M., Sharifi, M.J., Bahrepour, D., 2010. New RTD-based general threshold gate topologies and application to three-input XOR logic gates. J. Electr. Comput. Eng., 2010. Article 16. [doi:10.1155/2010/463925]
Muramatsu, N., Okazaki, H., Waho, T., 2005. A novel oscillation circuit using a resonate-tunneling diode. Proc. IEEE Int. Symp. on Circuits and Systems, p.2341–2344. [doi:10.1109/ISCAS.2005.1465094]
Muroga, S., 1971. Threshold Logic and Its Application. John Wiley & Sons USA.
Nikodem, M., Bawiec, M.A., 2010. Logic circuit synthesis using threshold gates based on nanodevices with negative differential resistance property. Proc. 10th IEEE Conf. on Nanotechnology, p. 227–232. [doi:10.1109/NANO.2010.5697745]
Wei, Y., Shen, J.Z., 2011. Novel universal threshold logic gate based on RTD and its application. Microelectron. J., 42(6):851–854. [doi:10.1016/j.mejo.2011.04.005]
Wu, X., Hurst, S.L., 1981. A new universal logic gate (ULG3) based on the Reed-Muller canonic expansion. Int. J. Electron., 51(6):747–762. [doi:10.1080/00207218108901380]
Zhang, R., Gupta, P., Zhong, L., et al., 2005. Threshold network synthesis and optimization and its application to nanotechnologies. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 24(1):107–118. [doi:10.1109/TCAD.2004.839468]
Zheng, Y.X., Huang, C., 2009. Complete logic functionality of reconfigurable RTD circuit elements. IEEE Trans. Nanotechnol., 8(5):631–642. [doi:10.1109/TNANO.2009.2016563]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61271124 and 61471314) and the Zhejiang Provincial Natural Science Foundation of China (Nos. LY13F010001 and LY15F010011)
ORCID: Mao-qun YAO, http://orcid.org/0000-0001-6484-4972
Rights and permissions
About this article
Cite this article
Yao, Mq., Yang, K., Xu, Cy. et al. Design of a novel RTD-based three-variable universal logic gate. Frontiers Inf Technol Electronic Eng 16, 694–699 (2015). https://doi.org/10.1631/FITEE.1500102
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500102