Skip to main content
Log in

Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis (FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashabani, M., Mohamed, Y.A.R.I., 2011. Multiobjective shape optimization of segmented pole permanentmagnet synchronous machines with improved torque characteristics. IEEE Trans. Magn., 47(4):795–804. http://dx.doi.org/10.1109/TMAG.2010.2104327

    Article  Google Scholar 

  • Atallah, K., Wang, J., Howe, D., 2003. Torque-ripple minimization in modular permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 39(6):1689–1695. http://dx.doi.org/10.1109/TIA.2003.818986

    Article  Google Scholar 

  • Bianchi, N., Bolognani, S., 2002. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl., 38(5):1259–1265. http://dx.doi.org/10.1109/TIA.2002.802989

    Article  Google Scholar 

  • Boukais, B., Zeroug, H., 2010. Magnet segmentation for commutation torque ripple reduction in a brushless DC motor drive. IEEE Trans. Magn., 46(11):3909–3919. http://dx.doi.org/10.1109/TMAG.2010.2057439

    Article  Google Scholar 

  • Chen, H.S., Dorrell, D.G., Tsai, M.C., 2010. Design and operation of interior permanent-magnet motors with two axial segments and high rotor saliency. IEEE Trans. Magn., 46(9):3664–3675. http://dx.doi.org/10.1109/TMAG.2010.2048037

    Article  Google Scholar 

  • Chen, N.N., Ho, S.L., Fu, W.N., 2010. Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM. IEEE Trans. Magn., 46(6):2478–2481. http://dx.doi.org/10.1109/TMAG.2010.2044764

    Article  Google Scholar 

  • Chu, W.Q., Zhu, Z.Q., 2013. Reduction of on-load torque ripples in permanent magnet synchronous machines by improved skewing. IEEE Trans. Magn., 49(7):3822–3825. http://dx.doi.org/10.1109/TMAG.2013.2247381

    Article  Google Scholar 

  • Fei, W.Z., Luk, P.C.K., 2009. An improved model for the back-EMF and cogging torque characteristics of a novel axial flux permanent magnet synchronous machine with a segmental laminated stator. IEEE Trans. Magn., 45(10):4609–4612. http://dx.doi.org/10.1109/TMAG.2009.2024127

    Article  Google Scholar 

  • Fei, W.Z., Luk, P.C.K., 2010. A new technique of cogging torque suppression in direct-drive permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 46(4):1332–1340. http://dx.doi.org/10.1109/TIA.2010.2049551

    Article  Google Scholar 

  • Fei, W.Z., Luk, P.C.K., 2012. Torque ripple reduction of a direct-drive permanent-magnet synchronous machine by material-efficient axial pole pairing. IEEE Trans. Ind. Electron., 59(6):2601–2611. http://dx.doi.org/10.1109/TIE.2011.2158048

    Article  Google Scholar 

  • Fei, W.Z., Luk, P.C.K., Shen, J.X., 2012. Torque analysis of permanent-magnet flux switching machines with rotor step skewing. IEEE Trans. Magn., 48(10):2664–2673. http://dx.doi.org/10.1109/TMAG.2012.2198223

    Article  Google Scholar 

  • Fei, W.Z., Luk, P.C.K., Wu, D., et al., 2013. Approximate three-dimensional finite element analysis of large permanent magnet synchronous generators with stator radial ventilating ducts. 39th Annual Conf. of IEEE Industrial Electronics Society, p.7313–7318. http://dx.doi.org/10.1109/IECON.2013.6700349

    Google Scholar 

  • Güemes, J.A., Iraolagoitia, A.A., Del Hoyo, J.I., et al., 2011. Torque analysis in permanent-magnet synchronous motors: a comparative study. IEEE Trans. Energy Conv., 26(1):55–63. http://dx.doi.org/10.1109/TEC.2010.2053374

    Article  Google Scholar 

  • Han, S.H., Jahns, T.M., Soong, W.L., et al., 2010. Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair. IEEE Trans. Energy Conv., 25(1):118–127. http://dx.doi.org/10.1109/TEC.2009.2033196

    Article  Google Scholar 

  • Islam, M.S., Mir, S., Sebastian, T., et al., 2005. Design consideration of sinusoidally excited permanent-magnet machines for low-torque-ripple applications. IEEE Trans. Ind. Appl., 41(4):955–962. http://dx.doi.org/10.1109/TIA.2005.851026

    Article  Google Scholar 

  • Islam, R., Husain, I., Fardoun, A., et al., 2009. Permanentmagnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl., 45(1):152–160. http://dx.doi.org/10.1109/TIA.2008.2009653

    Article  Google Scholar 

  • Jahns, T.M., Soong, W.L., 1996. Pulsating torque minimization techniques for permanent magnet AC motor drives—a review. IEEE Trans. Ind. Electron., 43(2):321–330. http://dx.doi.org/10.1109/41.491356

    Article  Google Scholar 

  • Lateb, R., Takorabet, N., Meibody-Tabar, F., 2006. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors. IEEE Trans. Magn., 42(3):442–445. http://dx.doi.org/10.1109/TMAG.2005.862756

    Article  Google Scholar 

  • Li, T., Slemon, G., 1988. Reduction of cogging torque in permanent magnet motors. IEEE Trans. Magn., 24(6):2901–2903. http://dx.doi.org/10.1109/20.92282

    Article  Google Scholar 

  • Pang, Y., Zhu, Z.Q., Howe, D., 2005. Self-shielding magnetized vs. shaped parallel-magnetized PM brushless AC motors. KIEE Int. Trans. Electr. Mach. Energy Conv. Syst., 5-B(1):13–19.

    Google Scholar 

  • Pyrhonen, J., Ruuskanen, V., Nerg, J., et al., 2010. Permanent-magnet length effects in AC machines. IEEE Trans. Magn., 46(10):3783–3789. http://dx.doi.org/10.1109/TMAG.2010.2050002

    Article  Google Scholar 

  • Ruuskanen, V., Nerg, J., Pyrhonen, J., 2011. Effect of lamination stack ends and radial cooling channels on noload voltage and inductances of permanent-magnet synchronous machines. IEEE Trans. Magn., 47(11):4643–4649. http://dx.doi.org/10.1109/TMAG.2011.2158233

    Article  Google Scholar 

  • Ruuskanen, V., Nerg, J., Niemelä, M., et al., 2013. Effect of radial cooling ducts on the electromagnetic performance of the permanent magnet synchronous generators with double radial forced air cooling for direct-driven wind turbines. IEEE Trans. Magn., 49(6):2974–2981. http://dx.doi.org/10.1109/TMAG.2013.2238679

    Article  Google Scholar 

  • Sopanen, J., Ruuskanen, V., Nerg, J., et al., 2011. Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent-magnet generator. IEEE Trans. Ind. Electron., 58(9):3859–3867. http://dx.doi.org/10.1109/TIE.2010.2087301

    Article  Google Scholar 

  • Tapia, J.A., Pyrhonen, J., Puranen, J., et al., 2013. Optimal design of large permanent magnet synchronous generators. IEEE Trans. Magn., 49(1):642–650. http://dx.doi.org/10.1109/TMAG.2012.2207907

    Article  Google Scholar 

  • Wang, Y., Jin, M.J., Fei, W.Z., et al., 2010. Cogging torque reduction in permanent magnet flux-switching machines by rotor teeth axial pairing. IET Electr. Power Appl., 4(7):500–506. http://dx.doi.org/10.1049/iet-epa.2009.0205

    Article  Google Scholar 

  • Yang, Y., Wang, X., Zhang, R., et al., 2006. The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors. IEEE Trans. Magn., 42(4):1135–1138. http://dx.doi.org/10.1109/TMAG.2006.871452

    Article  Google Scholar 

  • Zhu, Z.Q., Howe, D., 2000. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Conv., 15(4):407–412. http://dx.doi.org/10.1109/60.900501

    Article  Google Scholar 

  • Zhu, Z.Q., Ruangsinchaiwanich, S., Ishak, D., et al., 2005. Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets. IEEE Trans. Magn., 41(10):3910–3912. http://dx.doi.org/10.1109/TMAG.2005.854968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-zhong Fei.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51377140) and the National Basic Research Program (973) of China (No. 2013CB035604)

ORCID: He HAO, http://orcid.org/0000-0001-6376-9106

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Fei, Wz., Miao, Dm. et al. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts. Frontiers Inf Technol Electronic Eng 17, 814–824 (2016). https://doi.org/10.1631/FITEE.1500238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500238

Keywords

CLC number

Navigation