Skip to main content
Log in

Fast implementation of kernel simplex volume analysis based on modified Cholesky factorization for endmember extraction

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Endmember extraction is a key step in the hyperspectral image analysis process. The kernel new simplex growing algorithm (KNSGA), recently developed as a nonlinear alternative to the simplex growing algorithm (SGA), has proven a promising endmember extraction technique. However, KNSGA still suffers from two issues limiting its application. First, its random initialization leads to inconsistency in final results; second, excessive computation is caused by the iterations of a simplex volume calculation. To solve the first issue, the spatial pixel purity index (SPPI) method is used in this study to extract the first endmember, eliminating the initialization dependence. A novel approach tackles the second issue by initially using a modified Cholesky factorization to decompose the volume matrix into triangular matrices, in order to avoid directly computing the determinant tautologically in the simplex volume formula. Theoretical analysis and experiments on both simulated and real spectral data demonstrate that the proposed algorithm significantly reduces computational complexity, and runs faster than the original algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boardman, J.W., Kruse, F.A., Green, R.O., 1995. Mapping target signatures via partial unmixing of AVIRIS data. JPL Airborne Earth Science Workshop, p.23–26.

    Google Scholar 

  • Chang, C.I., Du, Q., 2004. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens., 42(3):608–619. http://dx.doi.org/10.1109/TGRS.2003.819189

    Article  Google Scholar 

  • Chang, C.I., Wu, C., Liu, W., et al., 2006. A new growing method for simplex-based endmember extraction algorithms. IEEE Trans. Geosci. Remote Sens., 44(10):2804–2819. http://dx.doi.org/10.1109/TGRS.2006.881803

    Article  Google Scholar 

  • Cui, J.T., Wang, J., Li, X.R., et al., 2013. Endmember extraction algorithm based on spatial pixel purity index. J. Zhejiang Univ. (Eng. Sci.), 47(9):1517–1523 (in Chinese). http://dx.doi.org/10.3785/j.issn.1008-973X.2013.09.002

    Google Scholar 

  • Dowler, S.W., Takashima, R., Andrews, M., 2013. Reducing the complexity of the N-FINDR algorithm for hyperspectral image analysis. IEEE Trans. Image Process., 22(7):2835–2848. http://dx.doi.org/10.1109/TIP.2012.2219546

    Article  Google Scholar 

  • Geng, X.R., Zhao, Y.C., Wang, F.X., et al., 2010. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis. Int. J. Remote Sens., 31(4):1027–1035. http://dx.doi.org/10.1080/01431160903154283

    Article  Google Scholar 

  • Geng, X.R., Xiao, Z.Q., Ji, L.Y., et al., 2013. A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery. ISPRS J. Photogr. Remote Sens., 79(5):211–218. http://dx.doi.org/10.1016/j.isprsjprs.2013.02.020

    Article  Google Scholar 

  • Gill, P.E., Murray, W., 1974. Newton-type method for unconstrained and linearly constrained optimization. Math. Programm., 7(1):311–350. http://dx.doi.org/10.1007/BF01585529

    Article  MathSciNet  Google Scholar 

  • Gill, P.E., Murray, W., Wright, M.H., 1981. Practical Optimization. Academic Press, London.

    MATH  Google Scholar 

  • Golub, G.H., van Loan, C.F., 1996. Matrix Computations. The John Hopkins University Press, Baltimore, Mariland.

    MATH  Google Scholar 

  • Liu, J.M., Zhang, J.S., 2012. A new maximum simplex volume method based on householder transformation for endmember extraction. IEEE Trans. Geosci. Remote Sens., 50(1):104–118. http://dx.doi.org/10.1109/TGRS.2011.2158829

    Article  Google Scholar 

  • Miao, L., Qi, H., 2007. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens., 45(3):765–777. http://dx.doi.org/10.1109/TGRS.2006.888466

    Article  Google Scholar 

  • NASA, 1997. NASA AVIRIS Data. Available from http://aviris.jpl.nasa.gov.

    Google Scholar 

  • Nascimento, J.M.P., Bioucas-Dias, J.M., 2005. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 43(4):898–910. http://dx.doi.org/10.1109/TGRS.2005.844293

    Article  Google Scholar 

  • Nascimento, J.M.P., Bioucas-Dias, J.M., 2008. New developments on VCA unmixing algorithm. SPIE, 7109: 71090F. http://dx.doi.org/10.1117/12.799838

    Google Scholar 

  • Ren, H., Chang, C.I., 2003. Automatic spectral target recognition in hyperspectral imagery. IEEE Trans. Aerosp. Electron. Syst., 39(4):1232–1249. http://dx.doi.org/10.1109/TAES.2003.1261124

    Article  Google Scholar 

  • Schowengerdt, R.A., 1997. Remote Sensing: Models and Methods for Image Processing. Academic Press, New York.

    Google Scholar 

  • Sun, K., Geng, X., Wang, P., 2014. A fast endmember extraction algorithm based on gram determinant. IEEE Geosci. Remote Sens. Lett., 11(6):1124–1128. http://dx.doi.org/10.1109/LGRS.2013.2288093

    Article  Google Scholar 

  • Tao, X., Wang, B., Zhang, L., 2009. Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett., 6(2):219–223. http://dx.doi.org/10.1109/LGRS.2008.2010529

    Article  Google Scholar 

  • Wang, L., Wei, F., Liu, D., 2013. Fast implementation of maximum simplex volume-based endmember extraction in original hyperspectral data space. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 6(2):516–521. http://dx.doi.org/10.1109/JSTARS.2012.2234439

    Article  Google Scholar 

  • Wang, L.J., Li, X.R., Zhao, L.Y., 2014. Fast implement of the simplex growing algorithm for endmember extraction. Acta Opt. Sin., 34(11):1128001 (in Chinese). http://dx.doi.org/10.3788/AOS201434.1128001

    Article  Google Scholar 

  • Xia, W., Pu, H.Y., Wang, B., et al., 2012. Triangular factorization-based simplex algorithms for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens., 50(11):4420–4440. http://dx.doi.org/10.1109/TGRS.2012.2195185

    Article  Google Scholar 

  • Xiong, W., Chang, C.I., Wu, C.C., 2011. Fast algorithms to implement N-FINDR for hyperspectral endmember extraction. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 4(3):545–564. http://dx.doi.org/10.1109/JSTARS.2011.2119466

    Article  Google Scholar 

  • Zhao, C.H., Qi, B., Wang, Y.L., 2012. An improved N-FINDR hyperspectral endmember extraction algorithm. J. Electron. Inform. Technol., 34(2):499–503 (in Chinese).

    Google Scholar 

  • Zhao, L.Y., Zheng, J.P., Li, X.R., et al., 2014. Kernel simplex growing algorithm based on a new simplex volume formula for hyperspectral endmember extraction. J. Appl. Remote Sens., 8(1):083594. http://dx.doi.org/10.1117/1.JRS.8.083594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-run Li.

Additional information

Project supported by the Zhejiang Provincial Natural Science Foundation of China (Nos. LY13F020044 and LZ14F030004) and the National Natural Science Foundation of China (No. 61571170)

ORCID: Jing LI, http://orcid.org/0000-0001-8436-1193; Xiao-run LI, http://orcid.org/0000-0001-7611-845X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Xr., Wang, Lj. et al. Fast implementation of kernel simplex volume analysis based on modified Cholesky factorization for endmember extraction. Frontiers Inf Technol Electronic Eng 17, 250–257 (2016). https://doi.org/10.1631/FITEE.1500244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500244

Key words

CLC number

Navigation