Abstract
Endmember extraction is a key step in the hyperspectral image analysis process. The kernel new simplex growing algorithm (KNSGA), recently developed as a nonlinear alternative to the simplex growing algorithm (SGA), has proven a promising endmember extraction technique. However, KNSGA still suffers from two issues limiting its application. First, its random initialization leads to inconsistency in final results; second, excessive computation is caused by the iterations of a simplex volume calculation. To solve the first issue, the spatial pixel purity index (SPPI) method is used in this study to extract the first endmember, eliminating the initialization dependence. A novel approach tackles the second issue by initially using a modified Cholesky factorization to decompose the volume matrix into triangular matrices, in order to avoid directly computing the determinant tautologically in the simplex volume formula. Theoretical analysis and experiments on both simulated and real spectral data demonstrate that the proposed algorithm significantly reduces computational complexity, and runs faster than the original algorithm.
Similar content being viewed by others
References
Boardman, J.W., Kruse, F.A., Green, R.O., 1995. Mapping target signatures via partial unmixing of AVIRIS data. JPL Airborne Earth Science Workshop, p.23–26.
Chang, C.I., Du, Q., 2004. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens., 42(3):608–619. http://dx.doi.org/10.1109/TGRS.2003.819189
Chang, C.I., Wu, C., Liu, W., et al., 2006. A new growing method for simplex-based endmember extraction algorithms. IEEE Trans. Geosci. Remote Sens., 44(10):2804–2819. http://dx.doi.org/10.1109/TGRS.2006.881803
Cui, J.T., Wang, J., Li, X.R., et al., 2013. Endmember extraction algorithm based on spatial pixel purity index. J. Zhejiang Univ. (Eng. Sci.), 47(9):1517–1523 (in Chinese). http://dx.doi.org/10.3785/j.issn.1008-973X.2013.09.002
Dowler, S.W., Takashima, R., Andrews, M., 2013. Reducing the complexity of the N-FINDR algorithm for hyperspectral image analysis. IEEE Trans. Image Process., 22(7):2835–2848. http://dx.doi.org/10.1109/TIP.2012.2219546
Geng, X.R., Zhao, Y.C., Wang, F.X., et al., 2010. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis. Int. J. Remote Sens., 31(4):1027–1035. http://dx.doi.org/10.1080/01431160903154283
Geng, X.R., Xiao, Z.Q., Ji, L.Y., et al., 2013. A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery. ISPRS J. Photogr. Remote Sens., 79(5):211–218. http://dx.doi.org/10.1016/j.isprsjprs.2013.02.020
Gill, P.E., Murray, W., 1974. Newton-type method for unconstrained and linearly constrained optimization. Math. Programm., 7(1):311–350. http://dx.doi.org/10.1007/BF01585529
Gill, P.E., Murray, W., Wright, M.H., 1981. Practical Optimization. Academic Press, London.
Golub, G.H., van Loan, C.F., 1996. Matrix Computations. The John Hopkins University Press, Baltimore, Mariland.
Liu, J.M., Zhang, J.S., 2012. A new maximum simplex volume method based on householder transformation for endmember extraction. IEEE Trans. Geosci. Remote Sens., 50(1):104–118. http://dx.doi.org/10.1109/TGRS.2011.2158829
Miao, L., Qi, H., 2007. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens., 45(3):765–777. http://dx.doi.org/10.1109/TGRS.2006.888466
NASA, 1997. NASA AVIRIS Data. Available from http://aviris.jpl.nasa.gov.
Nascimento, J.M.P., Bioucas-Dias, J.M., 2005. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 43(4):898–910. http://dx.doi.org/10.1109/TGRS.2005.844293
Nascimento, J.M.P., Bioucas-Dias, J.M., 2008. New developments on VCA unmixing algorithm. SPIE, 7109: 71090F. http://dx.doi.org/10.1117/12.799838
Ren, H., Chang, C.I., 2003. Automatic spectral target recognition in hyperspectral imagery. IEEE Trans. Aerosp. Electron. Syst., 39(4):1232–1249. http://dx.doi.org/10.1109/TAES.2003.1261124
Schowengerdt, R.A., 1997. Remote Sensing: Models and Methods for Image Processing. Academic Press, New York.
Sun, K., Geng, X., Wang, P., 2014. A fast endmember extraction algorithm based on gram determinant. IEEE Geosci. Remote Sens. Lett., 11(6):1124–1128. http://dx.doi.org/10.1109/LGRS.2013.2288093
Tao, X., Wang, B., Zhang, L., 2009. Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett., 6(2):219–223. http://dx.doi.org/10.1109/LGRS.2008.2010529
Wang, L., Wei, F., Liu, D., 2013. Fast implementation of maximum simplex volume-based endmember extraction in original hyperspectral data space. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 6(2):516–521. http://dx.doi.org/10.1109/JSTARS.2012.2234439
Wang, L.J., Li, X.R., Zhao, L.Y., 2014. Fast implement of the simplex growing algorithm for endmember extraction. Acta Opt. Sin., 34(11):1128001 (in Chinese). http://dx.doi.org/10.3788/AOS201434.1128001
Xia, W., Pu, H.Y., Wang, B., et al., 2012. Triangular factorization-based simplex algorithms for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens., 50(11):4420–4440. http://dx.doi.org/10.1109/TGRS.2012.2195185
Xiong, W., Chang, C.I., Wu, C.C., 2011. Fast algorithms to implement N-FINDR for hyperspectral endmember extraction. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 4(3):545–564. http://dx.doi.org/10.1109/JSTARS.2011.2119466
Zhao, C.H., Qi, B., Wang, Y.L., 2012. An improved N-FINDR hyperspectral endmember extraction algorithm. J. Electron. Inform. Technol., 34(2):499–503 (in Chinese).
Zhao, L.Y., Zheng, J.P., Li, X.R., et al., 2014. Kernel simplex growing algorithm based on a new simplex volume formula for hyperspectral endmember extraction. J. Appl. Remote Sens., 8(1):083594. http://dx.doi.org/10.1117/1.JRS.8.083594
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Zhejiang Provincial Natural Science Foundation of China (Nos. LY13F020044 and LZ14F030004) and the National Natural Science Foundation of China (No. 61571170)
ORCID: Jing LI, http://orcid.org/0000-0001-8436-1193; Xiao-run LI, http://orcid.org/0000-0001-7611-845X
Rights and permissions
About this article
Cite this article
Li, J., Li, Xr., Wang, Lj. et al. Fast implementation of kernel simplex volume analysis based on modified Cholesky factorization for endmember extraction. Frontiers Inf Technol Electronic Eng 17, 250–257 (2016). https://doi.org/10.1631/FITEE.1500244
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500244
Key words
- Endmember extraction
- Modified Cholesky factorization
- Spatial pixel purity index (SPPI)
- New simplex growing algorithm (NSGA)
- Kernel new simplex growing algorithm (KNSGA)