Skip to main content
Log in

Shadow obstacle model for realistic corner-turning behavior in crowd simulation

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This paper describes a novel model known as the shadow obstacle model to generate a realistic corner-turning behavior in crowd simulation. The motivation for this model comes from the observation that people tend to choose a safer route rather than a shorter one when turning a corner. To calculate a safer route, an optimization method is proposed to generate the corner-turning rule that maximizes the viewing range for the agents. By combining psychological and physical forces together, a full crowd simulation framework is established to provide a more realistic crowd simulation. We demonstrate that our model produces a more realistic corner-turning behavior by comparison with real data obtained from the experiments. Finally, we perform parameter analysis to show the believability of our model through a series of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Béhé, F., Galland, S., Gaud, N., et al., 2014. An ontologybased metamodel for multiagent-based simulations. Simul. Model. Pract. Theory, 40:64–85. http://dx.doi.org/10.1016/j.simpat.2013.09.002

    Article  Google Scholar 

  • Cui, Y., Qin, G., 2010. Intelligent path planning in 3D scene. Proc. Int. Conf. on Computer Application and System Modeling, p.579–583. http://dx.doi.org/10.1109/ICCASM.2010.5620400

    Google Scholar 

  • Curtis, S., Snape, J., Manocha, D., 2012. Way portals: efficient multi-agent navigation with line-segment goals. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.15–22. http://dx.doi.org/10.1145/2159616.2159619

    Google Scholar 

  • Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res., 17(7):760–772. http://dx.doi.org/10.1177/027836499801700706

    Article  Google Scholar 

  • Guy, S.J., Chhugani, J., Kim, C., et al., 2009. ClearPath: highly parallel collision avoidance for multi-agent simulation. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.177–187. http://dx.doi.org/10.1145/1599470.1599494

    Google Scholar 

  • Hashimoto, K., Yoshimi, T., Mizukawa, M., et al., 2013. A study of collision avoidance between service robot and human at corner—analysis of human behavior at corner. Proc. 10th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, p.383–384. http://dx.doi.org/10.1109/URAI.2013.6677293

    Google Scholar 

  • Helbing, D., Farkas, I., Vicsek, T., 2000. Simulating dynamical features of escape panic. Nature, 407(6803):487–490. http://dx.doi.org/10.1038/35035023

    Article  Google Scholar 

  • Jin, X., Xu, J., Wang, C.L., et al., 2008. Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput. Graph. Appl., 28(6):37–46. http://dx.doi.org/10.1109/MCG.2008.117

    Article  Google Scholar 

  • Kim, S., Guy, S.J., Manocha, D., 2013. Velocity-based modeling of physical interactions in multi-agent simulations. Proc. 12th ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.125–133. http://dx.doi.org/10.1145/2485895.2485910

    Chapter  Google Scholar 

  • Moussaïd, M., Helbing, D., Theraulaz, G., 2011. How simple rules determine pedestrian behavior and crowd disasters. PNAS, 108(17):6884–6888. http://dx.doi.org/10.1073/pnas.1016507108

    Article  Google Scholar 

  • Patil, S., van den Berg, J., Curtis, S., et al., 2011. Directing crowd simulations using navigation fields. IEEE Trans. Visual. Comput. Graph., 17(2):244–254. http://dx.doi.org/10.1109/TVCG.2010.33

    Article  Google Scholar 

  • Pelechano, N., Allbeck, J.M., Badler, N.I., 2008. Virtual Crowds: Methods, Simulation, and Control. Morgan & Claypool Publishers, USA. http://dx.doi.org/10.2200/s00123ed1v01y200808cgr008

    Google Scholar 

  • Reynolds, C.W., 1999. Steering behaviors for autonomous characters. Game Developers Conf., p.763–782.

    Google Scholar 

  • Rojas, F.A., Park, J.H., Yang, H.S., 2013. Group agent-based steering for the realistic corner turning and group movement of pedestrians in a crowd simulation. Proc. Computer Animation and Social Agents, p.1–4.

    Google Scholar 

  • Shao, W., Terzopoulos, D., 2005. Autonomous pedestrians. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.19–28. http://dx.doi.org/10.1145/1073368.1073371

    Google Scholar 

  • Snape, J., Guy, S.J., Lin, M.C., et al., 2012. Reciprocal collision avoidance and multi-agent navigation for video games. Workshops at the 26th AAAI Conf. on Artificial Intelligence, p.49–52.

    Google Scholar 

  • Snook, G., 2000. Simplified 3D movement and pathfinding using navigation meshes. Game Program. Gems, 1:288–304.

    Google Scholar 

  • Thalmann, D., Grillon, H., Maim, J., et al., 2009. Challenges in crowd simulation. Proc. Int. Conf. on CyberWorlds, p.1–12. http://dx.doi.org/10.1109/CW.2009.23

    Google Scholar 

  • van den Berg, J., Lin, M., Manocha, D., 2008. Reciprocal velocity obstacles for real-time multi-agent navigation. Proc. IEEE Int. Conf. on Robotics and Automation, p.1928–1935. http://dx.doi.org/10.1109/ROBOT.2008.4543489

    Google Scholar 

  • van Toll, W.G., Cook, A.F., Geraerts, R., 2012. Real-time density-based crowd simulation. Comput. Animat. Virt. Worlds, 23(1):59–69. http://dx.doi.org/10.1002/cav.1424

    Article  Google Scholar 

  • Watt, A., 1993. 3D Computer Graphics. Addison-Wesley, UK.

    Google Scholar 

  • Zhou, S., Chen, D., Cai, W., et al., 2010. Crowd modeling and simulation technologies. ACM Trans. Model. Comput. Simul., 20(4):20.1–20.35. http://dx.doi.org/10.1145/1842722.1842725

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-qi He.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61170318 and 61300133), the Open Research Funding Program of Key Laboratory of Geographic Information Science, China (No. KLGIS2015A05), the Fundamental Research Funds for the Central Universities, China (No. 222201514331), and the Opening Project of Shanghai Key Laboratory of New Drug Design, China (No. 14DZ2272500)

ORCID: Gao-qi HE, http://orcid.org/0000-0001-8365-0970

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Gq., Jin, Y., Chen, Q. et al. Shadow obstacle model for realistic corner-turning behavior in crowd simulation. Frontiers Inf Technol Electronic Eng 17, 200–211 (2016). https://doi.org/10.1631/FITEE.1500253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500253

Key words

CLC number

Navigation