Skip to main content
Log in

Power-efficient dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A novel dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme (DIFF-CGS) is proposed, which employs a transmission-gate-logic (TGL) based clock-gating scheme in the pulse generation stage. This scheme conditionally disables the inverter chain when the input data are kept unchanged, so redundant transitions of delayed clock signals and internal nodes of the latch are all eliminated, leading to low power efficiency. Based on SMIC 65 nm technology, extensive post-layout simulation results show that the proposed DIFF-CGS gains an improvement of 41.39% to 56.21% in terms of power consumption, compared with its counterparts at 10% data-switching activity. Also, full-swing operations in both implicit pulse generation and the static latch improve the robustness of the design. Thus, DIFF-CGS is suitable for low-power applications in very-large-scale integration (VLSI) designs with low data-switching activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Geng, L., Shen, J.Z., Xu, C.Y., 2016. Design of flip-flops with clock-gating and pull-up control scheme for powerconstrained and speed-insensitive applications. IET Comput. Dig. Techn., 10(4): 193–201. http://dx.doi.org/10.1049/iet-cdt.2015.0139

    Article  Google Scholar 

  • Goh, W.L., Yeo, K.S., Zhang, W., et al., 2007. A novel static dual edge-trigger flip-flop for high-frequency low-power application. IEEE Int. Symp. on Integrated Circuits, p.208–211. http://dx.doi.org/10.1109/ISICIR.2007.4441834

    Google Scholar 

  • Hwang, Y.T., Lin, J.F., Sheu, M.H., 2012. Low-power pulse-triggered flip-flop design with conditional pulseenhancement scheme. IEEE Trans. VLSI Syst., 20(2): 361–366. http://dx.doi.org/10.1109/TVLSI.2010.2096483

    Article  Google Scholar 

  • Hyman, R., Ranganathan, N., Bingel, T., et al., 2013. A clock control strategy for peak power and RMS current reduction using path clustering. IEEE Trans. VLSI Syst., 21(2): 259–269. http://dx.doi.org/10.1109/TVLSI.2012.2186989

    Article  Google Scholar 

  • Judy, D.J., Kanchana Bhaaskaran, V.S., 2012. Energy recovery clock gating scheme and negative edge triggering flip-flop for low power applications. Int. Conf. on Devices, Circuits and Systems, p.140–143. http://dx.doi.org/10.1109/ICDCSyst.2012.6188691

    Google Scholar 

  • Kawaguchi, H., Takayasu, S., 1998. A reduced clock-swing flip-flop (RCSFF) for 63% power reduction. IEEE J. Sol.-State Circ., 33(5): 807–811. http://dx.doi.org/10.1109/4.668997

    Article  Google Scholar 

  • Kim, S., Han, I., Paik, S., et al., 2011. Pulser gating: a clock gating of pulsed-latch circuits. Proc. IEEE Asia South Pacific Design Automation Conf., p.190–195. http://dx.doi.org/10.1109/ASPDAC.2011.5722182

    Google Scholar 

  • Klass, F., Amir, C., Das, A., et al., 1999. A new family of semidynamic and dynamic flip-flops with embedded logic for high-performance processors. IEEE J. Sol.-State Circ., 34(5): 712–716.1 http://dx.doi.org/10.1109/ASPDAC.2011.5722182

    Article  Google Scholar 

  • Ko, U., Balsara, P.T., 2000. High-performance energyefficient D-flip-flop circuits. IEEE Trans. VLSI Syst., 8(1): 94–98. http://dx.doi.org/10.1109/92.820765

    Article  Google Scholar 

  • Kong, B.S., Kim, S.S., Jun, Y.H., 2001. Conditional-capture flip-flop for statistical power reduction. IEEE J. Sol.-State Circ., 36(8): 1263–1271. http://dx.doi.org/10.1109/4.938376

    Article  Google Scholar 

  • Kulkarni, S.H., Sylvester, D., 2004. High performance level conversion for dual VDD design. IEEE Trans. VLSI Syst., 12(9): 926–936. http://dx.doi.org/10.1109/TVLSI.2004.833667

    Article  Google Scholar 

  • Maxim, A., Gheorghe, M., 2001. A novel physical based model of deep submicron CMOS transistors mismatch for Monte Carlo SPICE simulation. IEEE Int. Symp. on Circuits and Systems, p.511–514. http://dx.doi.org/10.1109/ISCAS.2001.922097

    Google Scholar 

  • Nedovic, N., Aleksic, M., Oklobdzija, V.G., 2002. Conditional pre-charge techniques for power-efficient dual-edge clocking. Proc. Int. Symp. on Low Power Electronics and Design, p.56–59. http://dx.doi.org/10.1109/LPE.2002.146709

    Google Scholar 

  • Phyu, M.W., Fu, K., Goh, W.L., et al., 2011. Power-efficient explicit-pulsed dual-edge triggered sense-amplifier flip-flops. IEEE Trans. VLSI Syst., 19(1): 1–9. http://dx.doi.org/10.1109/TVLSI.2009.2029116

    Article  Google Scholar 

  • Shen, J.Z., Geng, L., Wu, X.X., 2015. Low power pulsetriggered flip-flop based on clock triggering edge control technique. J. Circ. Syst. Comput., 24(07): 1550094. http://dx.doi.org/10.1142/S0218126615500942

    Article  Google Scholar 

  • Stojanovic, V., Oklobdzija, V.G., 1999. Comparative analysis of master-slave latches and flip-flops for highperformance and low-power systems. IEEE J. Sol.-State Circ., 34(4): 536–548. http://dx.doi.org/10.1109/4.753687

    Article  Google Scholar 

  • Strollo, A.G.M., de Caro, D., Napoli, E., et al., 2005. A novel high-speed sense-amplifier-based flip-flop. IEEE Trans. VLSI Syst., 13(11): 1266–1274. http://dx.doi.org/10.1109/TVLSI.2005.859586

    Article  Google Scholar 

  • Teh, C.K., Hamada, M., Fujita, T., et al., 2006. Conditional data mapping flip-flops for low-power and highperformance systems. IEEE Trans. VLSI Syst., 14(12): 1379–1383. http://dx.doi.org/10.1109/TVLSI.2006.887833

    Article  Google Scholar 

  • Teh, C.K., Fujita, T., Hara, H., et al., 2011. A 77% energysaving 22-transistor single-phase-clocking D-flip-flop with adoptive-coupling configuration in 40nm CMOS. IEEE Int. Solid-State Circuits. Conf. on Digest of Technical Papers, p.338–340. http://dx.doi.org/10.1109/ISSCC.2011.5746344

    Google Scholar 

  • Weste, N.H.E., 2006. CMOS VLSI Design: a Circuits and Systems Perspective (3rd Ed.). Pearson Education, Noida, India.

    Google Scholar 

  • Wu, Q., Pedram, M., Wu, X., 2000. Clock-gating and its application to low power design of sequential circuits. IEEE Trans. Circ. Syst., 47(3): 415–420. http://dx.doi.org/10.1109/81.841927

    Article  Google Scholar 

  • Wu, X.X., Shen, J.Z., 2012. Low-power explicit-pulsed triggered flip-flop with robust output. Electron. Lett., 48(24): 1523–1525. http://dx.doi.org/10.1049/Fel.2012.0943

    Article  Google Scholar 

  • Xiang, G.P., Shen, J.Z., Wu, X.X., et al., 2013. Design of a low-power pulse-triggered flip-flop with conditional clock technique. IEEE Int. Symp. on Circuits and Systems, p.121–124. http://dx.doi.org/10.1109/ISCAS.2013.6571797

    Google Scholar 

  • Zeitzoff, P.M., Chung, J.E., 2005. A perspective from the 2003 ITRS: MOSFET scaling trends, challenges, and potential solutions. IEEE Circ. Dev. Mag., 21(1): 4–15. http://dx.doi.org/10.1109/MCD.2005.1388764

    Article  Google Scholar 

  • Zhao, P., Darwish, T.K., Bayoumi, M.A., 2004. Highperformance and low power conditional discharge flip-flop. IEEE Trans. VLSI Syst., 12(5): 477–484. http://dx.doi.org/10.1109/TVLSI.2004.826192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-zhong Shen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61071062 and 61471314) and the Zhejiang Provincial Natural Science Foundation of China (No. LY13F010001)

ORCID: Ji-zhong SHEN, http://orcid.org/0000-0002-9031-2379

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, L., Shen, Jz. & Xu, Cy. Power-efficient dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme. Frontiers Inf Technol Electronic Eng 17, 962–972 (2016). https://doi.org/10.1631/FITEE.1500293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500293

Keywords

CLC number

Navigation