Skip to main content
Log in

A quality requirements model and verification approach for system of systems based on description logic

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

System of systems engineering (SoSE) involves the complex procedure of translating capability needs into the high-level requirements for system of systems (SoS) and evaluating how the SoS quality requirements meet their capability needs. One of the key issues is to model the SoS requirements and automate the verification procedure. To solve the problem of modeling and verification, meta-models are proposed to refine both functional and non-functional characteristics of the SoS requirements. A domain-specific modeling language is defined by extending Unified Modeling Language (UML) class and association with fuzzy constructs to model the vague and uncertain concepts of the SoS quality requirements. The efficiency evaluation function of the cloud model is introduced to evaluate the efficiency of the SoS quality requirements. Then a concise algorithm transforms the fuzzy UML models into the description logic (DL) ontology so that the verification can be automated with a DL reasoner. This method implements modeling and verification of high-level SoS quality requirements. A crisp case is used to facilitate and demonstrate the correctness and feasibility of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, R., Robinson, S., 2007. Simulation in business and industry: how simulation context can affect simulation practice? Proc. Spring Simulation Multiconference, p.152–159.

    Google Scholar 

  • Bagdatli, B., Mavris, D., 2012. Use of high-level architecture discrete event simulation in a system of systems design. IEEE Aerospace Conf., p.1–13. http://dx.doi.org/10.1109/AERO.2012.6187442

    Google Scholar 

  • Chapurlat, V., Braesch, C., 2008. Verification, validation, qualification and certification of enterprise models: statements and opportunities. Comput. Ind., 59(7): 711–721. http://dx.doi.org/10.1016/j.compind.2007.12.018

    Article  Google Scholar 

  • Chapurlat, V., Kamsu-Fogum, B., Prunet, F., 2006. A formal verification framework and associated tools for enterprise modeling: application to UEML. Comput. Ind., 57(2): 153–166. http://dx.doi.org/10.1016/j.compind.2005.06.001

    Article  Google Scholar 

  • Dong, Q.C., Wang, Z.X., Chen, G.Y., et al., 2012. Domainspecific modeling and verification for C4ISR capability requirements. J. Cent. South Univ., 19(5): 1334–1341. http://dx.doi.org/10.1007/s11771-012-1146-7

    Article  Google Scholar 

  • Ender, T., Leurck, R.F., Weaver, B., et al., 2010. Systems of systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation. IEEE Syst. J., 4(2): 156–166. http://dx.doi.org/10.1109/JSYST.2010.2045541

    Article  Google Scholar 

  • Eusgeld, I., Nan, C., Dietz, S., 2011. “System-of-systems” approach for interdependent critical infrastructures. Reliab. Eng. Syst. Safety, 96(6): 679–686. http://dx.doi.org/10.1016/j.ress.2010.12.010

    Article  Google Scholar 

  • Fernando, B., Miguel, D., Juan, G.R., 2009. Fuzzy description logics under Godel semantics. Int. J. Approx. Reas., 50(3): 494–514. http://dx.doi.org/10.1016/j.ijar.2008.10.003

    Article  Google Scholar 

  • Fotrousi, F., Fricker, S.A., Fiedler, M., 2014. Quality requirements elicitation based on inquiry of quality-impact relationships. 22nd IEEE Int. Requirements Engineering Conf., p.303–312. http://dx.doi.org/10.1109/RE.2014.6912272

    Google Scholar 

  • Gao, J.X., Li, D.Q., Havlin, S., 2014. From a single network to a network of networks. Nat. Sci. Rev., 1(3): 346–356. http://dx.doi.org/10.1093/nsr/nwu020

    Article  Google Scholar 

  • Ge, B.F., Hipel, K.W., Yang, K.W., et al., 2013. A data-centric capability focused approach for system-of-systems architecture modeling and analysis. Syst. Eng., 16(3): 363–377. http://dx.doi.org/10.1002/sys.21253

    Article  Google Scholar 

  • Ge, B.F., Hipel, K.W., Fang, L.P., et al., 2014a. An interactive portfolio decision analysis approach for system of systems architecting using the graph model for conflict resolution. IEEE Trans. Syst. Man Cybern., 44(10): 1328–1346. http://dx.doi.org/10.1109/TSMC.2014.2309321

    Article  Google Scholar 

  • Ge, B.F., Hipel, K.W., Yang, K.W., et al., 2014b. A novel executable modeling approach for system of systems architecture. IEEE Syst. J., 8(1): 4–13. http://dx.doi.org/10.1109/JSYST.2013.2270573

    Article  Google Scholar 

  • Grigoroudis, E., Phillis, Y.A., 2013. Modeling healthcare system of systems: a mathematical programming approach. IEEE Syst. J., 7(4): 571–580. http://dx.doi.org/10.1109/JSYST.2013.2251984

    Article  Google Scholar 

  • Guizzardi, G., 2005. Ontological Foundations for Structural Conceptual Models. PhD Thesis, Centre for Telematics and Information Technology, University of Twente, Enschede, the Netherlands.

    MATH  Google Scholar 

  • Haimes, Y.Y., 2012. Modeling complex systems of systems with phantom system models. Syst. Eng., 15(3): 333–346. http://dx.doi.org/10.1002/sys.21205

    Article  MathSciNet  Google Scholar 

  • Holt, J., Perry, S., Payne, R., 2015. A model-based approach for requirements engineering for systems of systems. IEEE Syst. J., 9(1): 252–262. http://dx.doi.org/10.1109/JSYST.2014.2312051

    Article  Google Scholar 

  • Huynh, T.V., Kessler, A., Oravec, J., 2011. Orthogonal array experiment in systems engineering and architecting. Syst. Eng., 14(2): 208–222. http://dx.doi.org/10.1002/sys.20172

    Article  Google Scholar 

  • Khan, I., 2010. Methodology for the development of executable system architecture. Proc. 8th Int. Conf. on FIT, p.1–4. http://dx.doi.org/10.1145/1943628.1943677

    Google Scholar 

  • Ma, Z.M., Zhang, F., Cheng, J., et al., 2011. Representing and reasoning on fuzzy UML models: a description logic approach. Expert Syst. Appl., 38(3): 2536–2549. http://dx.doi.org/10.1016/j.eswa.2010.08.042

    Article  Google Scholar 

  • Ma, Z.M., Li, Y., Zhang, F., 2012. Modeling fuzzy information in UML class diagrams and object-oriented database models. Fuzzy Sets Syst., 186(1): 26–46. http://dx.doi.org/10.1016/j.fss.2011.06.015

    Article  MathSciNet  Google Scholar 

  • Moynihan, R.A., Reining, R.C., Salamone, P.P., et al., 2009. Enterprise scale portfolio analysis at the National Oceanic and Atmospheric Administration (NOAA). Syst. Eng., 12(2): 155–168. http://dx.doi.org/10.1002/sys.20116

    Article  Google Scholar 

  • Ncube, C., Lim, S.L., Dogan, H., 2013. Identifying top challenges for international research on requirements engineering for systems of systems engineering. 21st IEEE Int. Requirements Engineering Conf., p.342–344. http://dx.doi.org/10.1109/RE.2013.6636746

    Google Scholar 

  • Office of the Deputy Under Secretary of Defense for Acquisition and Technology and Logistics (ODUSD (A&T)), 2008. Systems and Software Engineering, Systems Engineering Guide for Systems of Systems, Version 1.0. Technical Report No. ODUSD (A&T)SSE, Washington, D.C., USA.

    Google Scholar 

  • Petersen, K., Khurum, M., Angelis, L., 2014. Reasons for bottlenecks in very large-scale system of systems development. Inform. Softw. Techol., 56(10): 1403–1420. http://dx.doi.org/10.1016/j.infsof.2014.05.004

    Article  Google Scholar 

  • Regnell, B., Svensson, R.B., Olsson, T., 2008. Supporting roadmapping of quality requirements. IEEE Softw., 25(2): 42–47. http://dx.doi.org/10.1109/MS.2008.48

    Article  Google Scholar 

  • Stoilos, G., Stamou, G., Pan, J.Z., et al., 2007. Reasoning with very expressive fuzzy description logics. J. Artif. Intell. Res., 30: 273–320. http://dx.doi.org/10.1613/jair.2279

    Article  MathSciNet  Google Scholar 

  • Wang, R., Dagli, C.H., 2011. Executable system architecting using systems modeling language in conjunction with colored Petri nets in a model driven systems development process. Syst. Eng., 14(4): 383–409. http://dx.doi.org/10.1002/sys.20184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-long Wang or Zhi-xue Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61273210)

ORCID: Zhi-xue WANG, http://orcid.org/0000-0003-2009-6508

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ql., Wang, Zx., Zhang, Tt. et al. A quality requirements model and verification approach for system of systems based on description logic. J. Zhejiang Univ. - Sci. C 18, 346–361 (2017). https://doi.org/10.1631/FITEE.1500309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500309

Key words

CLC number

Navigation