Skip to main content
Log in

Ray-triangular Bézier patch intersection using hybrid clipping algorithm

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bézier patch defined over a triangular domain, called the hybrid clipping (HC) algorithm. If the ray pierces the patch only once, we locate the parametric value of the intersection to a smaller triangular domain, which is determined by pairs of lines and quadratic curves, by using a multi-degree reduction method. The triangular domain is iteratively clipped into a smaller one by combining a subdivision method, until the domain size reaches a prespecified threshold. When the ray intersects the patch more than once, Descartes’ rule of signs and a split step are required to isolate the intersection points. The algorithm can be proven to clip the triangular domain with a cubic convergence rate after an appropriate preprocessing procedure. The proposed algorithm has many attractive properties, such as the absence of an initial guess and insensitivity to small changes in coefficients of the original problem. Experiments have been conducted to illustrate the efficacy of our method in solving ray-triangular Bézier patch intersection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barth, W., Stürzlinger, W., 1993. Efficient ray tracing for Bézier and B-spline surfaces. Comput. Graph., 17(4): 423–430. http://dx.doi.org/10.1016/0097-8493(93)90031-4

    Article  Google Scholar 

  • Barton, M., Jüttler, B., 2007a. Computing roots of polynomials by quadratic clipping. Comput. Aided Geom. Des., 24(3): 125–141. http://dx.doi.org/10.1016/j.cagd.2007.01.003

    Article  MathSciNet  Google Scholar 

  • Barton, M., Jüttler, B., 2007b. Computing Roots of Systems of Polynomials by Linear Clipping. SFB F013 Technical Report.

  • Garloff, J., Smith, A.P., 2001. Investigation of a subdivision based algorithm for solving systems of polynomial equations. Nonl. Anal. Theory Methods Appl., 47(1): 167–178. http://dx.doi.org/10.1016/S0362-546X(01)00166-3

    Article  MathSciNet  Google Scholar 

  • Haines, E., Hanrahan, P., Cook, R.L., et al., 1989. An Introduction to Ray Tracing. Academic Press, London, UK.

    Google Scholar 

  • Hanrahan, P., 1983. Ray tracing algebraic surfaces. ACM SIGGRAPH Comput. Graph., 17(3): 83–90. http://dx.doi.org/10.1145/964967.801136

    Article  Google Scholar 

  • Joy, K.I., Grant, C.W., Max, N.L., et al., 1989. Tutorial: Computer Graphics, Image Synthesis. IEEE Computer Society Press, Los Alamitos, CA, USA.

    Google Scholar 

  • Jüttler, B., Moore, B., 2011. A quadratic clipping step with superquadratic convergence for bivariate polynomial systems. Math. Comput. Sci., 5(2): 223–235. http://dx.doi.org/10.1007/s11786-011-0091-4

    Article  MathSciNet  Google Scholar 

  • Liu, L., Zhang, L., Lin, B., et al., 2009. Fast approach for computing roots of polynomials using cubic clipping. Comput. Aided Geom. Des., 26(5): 547–559. http://dx.doi.org/10.1016/j.cagd.2009.02.003

    Article  MathSciNet  Google Scholar 

  • Lou, Q., Liu, L., 2012. Curve intersection using hybrid clipping. Comput. Graph., 36(5): 309–320. http://dx.doi.org/10.1016/j.cag.2012.03.021

    Article  Google Scholar 

  • Lu, L., Wang, G., 2006. Multi-degree reduction of triangular Bézier surfaces with boundary constraints. Comput.-Aided Des., 38(12): 1215–1223. http://dx.doi.org/10.1016/j.cad.2006.07.004

    Article  Google Scholar 

  • Markus, G., Oliver, A., 2005. Interactive ray tracing of trimmed bicubic Bézier surfaces without triangulation. Proc. 13th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision, p.71–78.

    Google Scholar 

  • Martin, W., Cohen, E., Fish, R., et al., 2000. Practical ray tracing of trimmed NURBS surfaces. J. Graph. Tools, 5(1): 27–52. http://dx.doi.org/10.1080/10867651.2000.10487519

    Article  Google Scholar 

  • Moore, R.E., Jones, S.T., 1977. Safe starting regions for iterative methods. SIAM J. Numer. Anal., 14(6): 1051–1065. http://dx.doi.org/10.1137/0714072

    Article  MathSciNet  Google Scholar 

  • Nishita, T., Sederberg, T.W., Kakimoto, M., 1990. Ray tracing trimmed rational surface patches. ACM SIGGRAPH Comput. Graph., 24(4): 337–345. http://dx.doi.org/10.1145/97880.97916

    Article  Google Scholar 

  • Roth, S.H.M., Diezi, P., Gross, M.H., 2000. Triangular Bézier clipping. Proc. 8th Pacific Conf. on Computer Graphics and Applications, p.413–414. http://dx.doi.org/10.1109/PCCGA.2000.883971

    Google Scholar 

  • Rouillier, F., Zimmermann, P., 2004. Efficient isolation of polynomial’s real roots. J. Comput. Appl. Math., 162(1): 33–50. http://dx.doi.org/10.1016/j.cam.2003.08.015

    Article  MathSciNet  Google Scholar 

  • Schulz, C., 2009. Bézier clipping is quadratically convergent. Comput. Aided Geom. Des., 26(1): 61–74. http://dx.doi.org/10.1016/j.cagd.2007.12.006

    Article  Google Scholar 

  • Sederberg, T.W., Nishita, T., 1990. Curve intersection using Bézier clipping. Comput.-Aided Des., 22(9): 538–549. http://dx.doi.org/10.1016/0010-4485(90)90039-F

    Article  Google Scholar 

  • Stürzlinger, W., 1998. Ray-tracing triangular trimmed freeform surfaces. IEEE Trans. Vis. Comput. Graph., 4(3): 202–214. http://dx.doi.org/10.1109/2945.722295

    Article  Google Scholar 

  • Sweeney, M.A.J., Bartels, R.H., 1986. Ray tracing free-form B-spline surfaces. IEEE Comput. Graph. Appl., 6(2): 41–49. http://dx.doi.org/10.1109/MCG.1986.276691

    Article  Google Scholar 

  • Toth, D.L., 1985. On ray tracing parametric surfaces. ACM SIGGRAPH Comput. Graph., 19(3): 171–179. http://dx.doi.org/10.1145/325334.325233

    Article  Google Scholar 

  • Woodward, C., 1989. Ray tracing parametric surfaces by subdivision in viewing plane. In: Straßer, W., Seidel, H.P. (Eds.), Theory and Practice of Geometric Modeling. Springer Berlin Heidelberg, Germany, p.273–287. http://dx.doi.org/10.1007/978-3-642-61542-9_18

    Chapter  Google Scholar 

  • Yen, J., Spach, S., Smith, M.T., et al., 1991. Parallel boxing in B-spline intersection. IEEE Comput. Graph. Appl., 11(1): 72–79. http://dx.doi.org/10.1109/38.67703

    Article  Google Scholar 

  • Zhang, R.J., Wang, G., 2005. Constrained Bézier curves’ best multi-degree reduction in the L2-norm. Progr. Nat. Sci., 15(9): 843–850. http://dx.doi.org/10.1080/10020070512331343010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Cao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61100105, 61572020, and 61472332), the Natural Science Foundation of Fujian Province of China (No. 2015J01273), and the Fundamental Research Funds for the Central Universities, China (Nos. 20720150002 and 20720140520)

ORCID: Juan CAO, http://orcid.org/0000-0002-8154-4397

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yh., Cao, J., Chen, Zg. et al. Ray-triangular Bézier patch intersection using hybrid clipping algorithm. Frontiers Inf Technol Electronic Eng 17, 1018–1030 (2016). https://doi.org/10.1631/FITEE.1500390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500390

Keywords

CLC number

Navigation