Abstract
User-generated content (UGC) such as blogs and twitters are exploding in modern Internet services. In such systems, recommender systems are needed to help people filter vast amount of UGC generated by other users. However, traditional rec-ommendation models do not use user authorship of items. In this paper, we show that with this additional information, we can significantly improve the performance of recommendations. A generative model that combines hierarchical topic modeling and matrix factorization is proposed. Empirical results show that our model outperforms other state-of-the-art models, and can provide interpretable topic structures for users and items. Furthermore, since user interests can be inferred from their productions, rec-ommendations can be made for users that do not have any ratings to solve the cold-start problem.
Similar content being viewed by others
References
Agarwal, D., Chen, B.C., 2009. Regression-based latent factor models. Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.19–28. http://dx.doi.org/10.1145/1557019.1557029
Agarwal, D., Chen, B.C., 2010. fLDA: matrix factorization through latent Dirichlet allocation. Proc. 3rd ACM Int. Conf. on Web Search and Data Mining, p.91–100. http://dx.doi.org/10.1145/1718487.1718499
Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent Dirichlet allocation. J Mach. Learn. Res., 3:993–1022.
Blei, D.M., Griffiths, T.L., Jordan, M.I., 2010. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM, 57(2):7. http://dx.doi.org/10.1145/1667053.1667056
de Pessemier, T., Deryckere, T., Martens, L., 2011. Context aware recommendations for user-generated content on a social network site. Proc. 7th European Interactive Tele-vision Conf., p.133–136. http://dx.doi.org/10.1145/1542084.1542108
Deshpande, M., Karypis, G., 2004. Item-based top-N recom-mendation algorithms. ACM Trans. Inform. Syst., 22(1):143–177. http://dx.doi.org/10.1145/963770.963776
Duchi, J., Shalev-Shwartz, S., Singer, Y., et al., 2008. Efficient projections onto the l1-ball for learning in high dimen-sions. Proc. 25th Int. Conf. on Machine Learning, p.272–279.
Hu, Y., Koren, Y., Volinsky, C., 2008. Collaborative filtering for implicit feedback datasets. 8th IEEE Int. Conf. on Data Mining, p.263–272. http://dx.doi.org/10.1109/ICDM.2008.22
Li, Y.M., Yang, M., Zhang, Z.F., 2013. Scientific articles recommendation. Proc. 22nd ACM Int. Conf. on Infor-mation and Knowledge Management, p.1147–1156. http://dx.doi.org/10.1145/2505515.2505705
Linden, G., Smith, B., York, J., 2003. Amazon.com recom-mendations: item-to-item collaborative filtering. IEEE Intern. Comput., 7(1):76–80. http://dx.doi.org/10.1109/MIC.2003.1167344
Lops, P., de Gemmis, M., Semeraro, G., 2011. Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., et al. (Eds.), Recom-mender Systems Handbook. Springer, Boston, p.73–105. http://dx.doi.org/10.1007/978-0-387-85820-3_3
Melville, P., Mooney, R.J., Nagarajan, R., 2002. Content-boosted collaborative filtering for improved recommen-dations. Proc. 8th National Conf. on Artificial Intelli-gence, p.187–192.
Mooney, R.J., Roy, L., 2000. Content-based book recom-mending using learning for text categorization. Proc. 5th ACM Conf. on Digital Libraries, p.195–204. http://dx.doi.org/10.1145/336597.336662
Pan, R., Zhou, Y., Cao, B., et al., 2008. One-class collaborative filtering. 8th IEEE Int. Conf. on Data Mining, p.502–511. http://dx.doi.org/10.1109/ICDM.2008.16
Purushotham, S., Liu, Y., Kuo, C.C.J., 2012. Collaborative topic regression with social matrix factorization for recommendation systems. arXiv:1206.4684.
Rendle, S., Freudenthaler, C., Gantner, Z., et al., 2009. BPR: Bayesian personalized ranking from implicit feedback. Proc. 25th Conference on Uncertainty in Artificial Intel-ligence, p.452–461.
Salakhutdinov, R., Mnih, A., 2007. Probabilistic matrix fac-torization. Neural Information Processing Systems, p.1257–1264.
Salakhutdinov, R., Mnih, A., 2008. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. Proc. 25th Int. Conf. on Machine Learning, p.880–887. http://dx.doi.org/10.1145/1390156.1390267
Teh, Y.W., Jordan, M.I., Beal, M.J., et al., 2004. Sharing clusters among related groups: hierarchical Dirichlet processes. Neural Information Processing Systems, p.1385–1392.
Veeramachaneni, S., Sona, D., Avesani, P., 2005. Hierarchical Dirichlet model for document classification. Proc. 22nd Int. Conf. on Machine Learning, p.928–935. http://dx.doi.org/10.1145/1102351.1102468
Wang, C., Blei, D.M., 2011. Collaborative topic modeling for recommending scientific articles. Proc. 17th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.448–456. http://dx.doi.org/10.1145/2020408.2020480
Xu, Y., Yin, J., 2015. Collaborative recommendation with user generated content. Eng. Appl. Artif. Intel., 45(C):281–294. http://dx.doi.org/10.1016/j.engappai.2015.07.012
Xu, Y., Chen, Z., Yin, J., et al., 2015. Learning to recommend with user generated content. Int. Conf. on Web-Age In-formation Management, p.221–232. http://dx.doi.org/10.1007/978-3-319-21042-1_18
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Monitoring Statistics Project on Agricul-tural and Rural Resources, MOA, China, the Innovative Talents Pro-ject, MOA, China, and the Science and Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences (No. CAAS- ASTIP-2015-AI I-02)
ORCID: Zhe-min LI, http://orcid.org/0000-0003-3170-0117
Rights and permissions
About this article
Cite this article
Zhang, W., Zhuang, Jy., Yong, X. et al. Personalized topic modeling for recommending user-generated content. Frontiers Inf Technol Electronic Eng 18, 708–718 (2017). https://doi.org/10.1631/FITEE.1500402
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500402
Key words
- User-generated content (UGC)
- Collaborative filtering (CF)
- Matrix factorization (MF)
- Hierarchical topic modeling