Skip to main content
Log in

Abstract

We present a fully automatic method for finding geometrically consistent correspondences while discarding outliers from the candidate point matches in two images. Given a set of candidate matches provided by scale-invariant feature transform (SIFT) descriptors, which may contain many outliers, our goal is to select a subset of these matches retaining much more geometric information constructed by a mapping searched in the space of all diffeomorphisms. This problem can be formulated as a constrained optimization involving both the Beltrami coefficient (BC) term and quasi-conformal map, and solved by an efficient iterative algorithm based on the variable splitting method. In each iteration, we solve two subproblems, namely a linear system and linearly constrained convex quadratic programming. Our algorithm is simple and robust to outliers. We show that our algorithm enables producing more correct correspondences experimentally compared with state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belongie, S., Malik, J., Puzicha, J., 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Patt. Anal. Mach. Intell., 24(4):509–522. http://dx.doi.org/10.1109/34.993558

    Article  Google Scholar 

  • Bers, L., 1977. Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc., 83(6):1083–1100. http://dx.doi.org/10.1090/S0002-9904-1977-14390-5

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd, S., Parikh, N., Chu, E., et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1–122. http://dx.doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  • Chui, H., Rangarajan, A., 2003. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understand., 89(2-3):114–141. http://dx.doi.org/10.1016/S1077-3142(03)00009-2

    Article  MATH  Google Scholar 

  • Daripa, P., 1991. On a numerical method for quasi-conformal grid generation. J. Comput. Phys., 96(1):229–236. http://dx.doi.org/10.1016/0021-9991(91)90274-O

    Article  MathSciNet  MATH  Google Scholar 

  • Daripa, P., 1992. A fast algorithm to solve nonhomogeneous Cauchy-Reimann equations in the complex plane. SIAM J. Sci. Stat. Comput., 13(6):1418–1432. http://dx.doi.org/10.1137/0913080

    Article  MathSciNet  MATH  Google Scholar 

  • Duchenne, O., Bach, F., Kweon, I.S., et al., 2011. A tensorbased algorithm for high-order graph matching. IEEE Trans. Patt. Anal. Mach. Intell., 33(12):2383–2395. http://dx.doi.org/10.1109/TPAMI.2011.110

    Article  Google Scholar 

  • Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395. http://dx.doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  • Gardiner, F.P., Lakic, N., 2000. Quasiconformal Teichmüller Theory. American Mathematical Society, Providence, USA. http://dx.doi.org/10.1090/surv/076

  • Gu, X.D., Yau, S.T., 2008. Computational Conformal Geometry. International Press, Somerville, MA,USA.

    MATH  Google Scholar 

  • Heider, P., Pierre-Pierre, A., Li, R., et al., 2011. Local shape descriptors, a survey and evaluation. Eurographics Workshop on 3D Object Retrieval, p.1–8. http://dx.doi.org/10.2312/3DOR/3DOR11/049-056

    Google Scholar 

  • Hinton, G.E., Williams, C.K.I., Revow, M.D., 1991. Adaptive elastic models for hand-printed character recognition. 4th Int. Conf. on Neural Information Processing Systems, p.512–519.

    Google Scholar 

  • Ho, K.T., Lui, L.M., 2016. QCMC: quasi-conformal parameterizations for multiply-connected domains. Adv. Comput. Math., 42(2):279–312. http://dx.doi.org/10.1007/s10444-015-9424-1

    Article  MathSciNet  MATH  Google Scholar 

  • Jian, B., Vemuri, B.C., Marroquin, J.L., 2005. Robust nonrigid multimodal image registration using local frequency maps. Biennial Int. Conf. on Information Processing in Medical Imaging, p.504–515. http://dx.doi.org/10.1007/11505730_42

    Chapter  Google Scholar 

  • Lam, K.C., Lui, L.M., 2014. Landmark and intensity-based registration with large deformations via quasi-conformal maps.

  • SIAM J. Imag. Sci., 7(4):2364–2392. http://dx.doi.org/10.1137/130943406

  • Lazebnik, S., Schmid, C., Ponce, J., 2004. Semi-local affine parts for object recognition. British Machine Vision Conf., p.779–788. http://dx.doi.org/10.5244/C.18.98

    Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J., 2005. A maximum entropy framework for part-based texture and object recognition. ICCV, p.832–838. http://dx.doi.org/10.1109/ICCV.2005.10

    Google Scholar 

  • Lehto, O., Virtanen, K.I., Lucas, K.W., 1973. Quasiconformal Mappings in the Plane. Springer New York.

    Book  MATH  Google Scholar 

  • Li, Y., Xie, X., Yang, Z., 2015. Alternating direction method of multipliers for solving dictionary learning. Commun. Math. Stat., 3:37–55. http://dx.doi.org/10.1007/s40304-015-0050-5

    Article  MathSciNet  MATH  Google Scholar 

  • Lipman, Y., Yagev, S., Poranne, R., et al., 2014. Feature matching with bounded distortion. ACM Trans. Graph., 33(3):26. http://dx.doi.org/10.1145/2602142

    Article  MATH  Google Scholar 

  • Lui, L.M., Ng, T.C., 2015. A splitting method for diffeomorphism optimization problem using Beltrami coefficients. J. Sci. Comput., 63(2):573–611. http://dx.doi.org/10.1007/s10915-014-9903-4

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, L.M., Wong, T.W., Zeng, W., et al., 2012. Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput., 50(3):557–585. http://dx.doi.org/10.1007/s10915-011-9506-2

    Article  MathSciNet  MATH  Google Scholar 

  • Mastin, C.W., Thompson, J.F., 1984. Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput., 5(2):305–310. http://dx.doi.org/10.1137/0905022

    Article  MathSciNet  MATH  Google Scholar 

  • Montagnat, J., Delingette, H., Ayache, N., 2001. A review of deformable surfaces: topology, geometry and deformation. Image Vis. Comput., 19(14):1023–1040. http://dx.doi.org/10.1016/S0262-8856(01)00064-6

    Article  Google Scholar 

  • Nealen, A., Müller, M., Keiser, R., et al., 2006. Physically based deformable models in computer graphics. Comput. Graph. For., 25(4):809–836. http://dx.doi.org/10.1111/j.1467-8659.2006.01000.x

    Google Scholar 

  • Sasaki, Y., 2007. The Truth of the F-measure. School of Computer Science, University of Manchester.

  • Taimouri, V., Hua, J., 2014. Deformation similarity measurement in quasi-conformal shape space. Graph. Models, 76(2):57–69. http://dx.doi.org/10.1016/j.gmod.2013.12.001

    Article  Google Scholar 

  • Tuytelaars, T., Mikolajczyk, K., 2008. Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis., 3(3):177–280. http://dx.doi.org/10.1561/0600000017

    Article  Google Scholar 

  • van Kaick, O., Zhang, H., Hamarneh, G., et al., 2011. A survey on shape correspondence. Comput. Graph. For., 30(6):1681–1707. http://dx.doi.org/10.1111/j.1467-8659.2011.01884.x

    Google Scholar 

  • Vedaldi, A., Fulkerson, B., 2010. Vlfeat: an open and portable library of computer vision algorithms. Proc. 18th ACM Int. Conf. on Multimedia, p.1469–1472. http://dx.doi.org/10.1145/1873951.1874249

    Google Scholar 

  • Wang, S., Wang, Y., Jin, M., et al., 2007. Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Patt. Anal. Mach. Intell., 29(7):1209–1220. http://dx.doi.org/10.1109/TPAMI.2007.1050

    Article  Google Scholar 

  • Weber, O., Myles, A., Zorin, D., 2012. Computing extremal quasiconformal maps. Comput. Graph. For., 31(5):1679–1689. http://dx.doi.org/10.1111/j.1467-8659.2012.03173.x

    Google Scholar 

  • Wright, S.J., 2015. Coordinate descent algorithms. Math. Program., 151(1):3–34. http://dx.doi.org/10.1007/s10107-015-0892-3

    Article  MathSciNet  MATH  Google Scholar 

  • Yezzi, A., Mennucci, A., 2005. Conformal metrics and true “gradient flows” for curves. ICCV, p.913–919. http://dx.doi.org/10.1109/ICCV.2005.60

    Google Scholar 

  • Zeng, W., Gu, X.D., 2011. Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. CVPR, p.2457–2464. http://dx.doi.org/10.1109/CVPR.2011.5995410

    Google Scholar 

  • Zeng, W., Hua, J., Gu, X., 2009. Symmetric conformal mapping for surface matching and registration. Int. J. CAD/CAM, 9(1):103–109.

    Google Scholar 

  • Zhao, Z., Feng, X., Teng, S., et al., 2012. Multiscale point correspondence using feature distribution and frequency domain alignment. Math. Probl. Eng., 2012:382369. http://dx.doi.org/10.1155/2012/382369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-gang Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61672482 and 11626253) and the One Hundred Talent Project of the Chinese Academy of Sciences

ORCID: Chun-xue WANG, http://orcid.org/0000-0002-2118-3016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cx., Liu, Lg. Feature matching using quasi-conformal maps. Frontiers Inf Technol Electronic Eng 18, 644–657 (2017). https://doi.org/10.1631/FITEE.1500411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500411

Key words

CLC number

Navigation