Skip to main content
Log in

Carbon emission impact on the operation of virtual power plant with combined heat and power system

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of heat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann, T., Andersson, G., Söder, L., 2001. Distributed generation: a definition. Electr. Power Syst. Res., 57(3):195–204. http://dx.doi.org/10.1016/S0378-7796(01)00101-8

    Article  Google Scholar 

  • Arslan, O., Karasan, O.E., 2013. Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks. Energy, 60:116–124. http://dx.doi.org/10.1016/j.energy.2013.08.039

    Article  Google Scholar 

  • Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer-Verlag, New York, USA, p.155–192. http://dx.doi.org/10.1007/978-1-4757-0450-1

    MATH  Google Scholar 

  • Driesen, J., Katiraei, F., 2008. Design for distributed energy resources. IEEE Power Energy Mag., 6(3):30–40. http://dx.doi.org/10.1109/MPE.2008.918703

    Article  Google Scholar 

  • Guan, D., Hubacek, K., Weber, C.L., et al., 2008. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Change, 18(4):626–634. http://dx.doi.org/10.1016/j.gloenvcha.2008.08.001

    Article  Google Scholar 

  • Hernandez, L., Baladron, C., Aguiar, J.M., et al., 2013. A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Commun. Mag., 51(1):106–113. http://dx.doi.org/10.1109/MCOM.2013.6400446

    Article  Google Scholar 

  • Kieny, C., Berseneff, B., Hadjsaid, N., et al., 2009. On the concept and the interest of virtual power plant: some results from the European project Fenix. Proc. IEEE Power & Energy Society General Meeting, p.1–6. http://dx.doi.org/10.1109/PES.2009.5275526

    Google Scholar 

  • Li, Z.M., Zhang, F., Liang, J., et al., 2015. Optimization on microgrid with combined heat and power system. Proc. CSEE, 35(14):3569–3576 (in Chinese). http://dx.doi.org/10.13334/j.0258-8013.pcsee.2015.14.011

    Google Scholar 

  • Lombardi, P., Stötzer, M., Styczynski, Z., et al., 2011. Multicriteria optimization of an energy storage system within a Virtual Power Plant architecture. Proc. IEEE Power and Energy Society General Meeting, p.1–6. http://dx.doi.org/10.1109/PES.2011.6039347

    Google Scholar 

  • Lund, H., Münster, E., 2003. Modelling of energy systems with a high percentage of CHP and wind power. Renew. Energy, 28(14):2179–2193. http://dx.doi.org/10.1016/S0960-1481(03)00125-3

    Article  Google Scholar 

  • Mashhour, E., Moghaddas-Tafreshi, S.M., 2011. Bidding strategy of virtual power plant for participating in energy and spinning reserve markets—Part II: numerical analysis. IEEE Trans. Power Syst., 26(2):957–964. http://dx.doi.org/10.1109/TPWRS.2010.2070883

    Article  Google Scholar 

  • Mohd, A., Ortjohann, E., Schmelter, A., et al., 2008. Challenges in integrating distributed energy storage systems into future smart grid. Proc. IEEE Int. Symp. on Industrial Electronics, p.1627–1632. http://dx.doi.org/10.1109/ISIE.2008.4676896

    Google Scholar 

  • Pandžic, H., Kuzle, I., Capuder, T., 2013. Virtual power plant mid-term dispatch optimization. Appl. Energy, 101:134–141. http://dx.doi.org/10.1016/j.apenergy.2012.05.039

    Article  Google Scholar 

  • Perroni, C., Rutherford, T.F., 1993. International trade in carbon emission rights and basic materials: general equilibrium calculations for 2020. Scand. J. Econ., 95(3): 257–278. http://dx.doi.org/10.2307/3440355

    Article  Google Scholar 

  • Pudjianto, D., Ramsay, C., Strbac, G., 2007. Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener., 1(1):10–16. http://dx.doi.org/10.1049/iet-rpg:20060023

    Article  Google Scholar 

  • Raab, A.F., Ferdowsi, M., Karfopoulos, E., et al., 2011. Virtual power plant control concepts with electric vehicles. Proc. 16th Int. Conf. on Intelligent System Application to Power Systems, p.1–6. http://dx.doi.org/10.1109/ISAP.2011.6082214

    Google Scholar 

  • Ruiz, N., Cobelo, I., Oyarzabal, J., 2009. A direct load control model for virtual power plant management. IEEE Trans. Power Syst., 24(2):959–966. http://dx.doi.org/10.1109/TPWRS.2009.2016607

    Article  Google Scholar 

  • Saboori, H., Mohammadi, M., Taghe, R., 2011. Virtual power plant (VPP), definition, concept, components and types. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1–4. http://dx.doi.org/10.1109/APPEEC.2011.5749026

    Google Scholar 

  • Skarvelis-Kazakos, S., Rikos, E., Kolentini, E., et al., 2013. Implementing agent-based emissions trading for controlling Virtual Power Plant emissions. Electr. Power Syst. Res., 102:1–7. http://dx.doi.org/10.1016/j.epsr.2013.04.004

    Article  Google Scholar 

  • Teleke, S., Baran, M.E., Huang, A.Q., et al., 2009. Control strategies for battery energy storage for wind farm dispatching. IEEE Trans. Energy Conv., 24(3):725–732. http://dx.doi.org/10.1109/TEC.2009.2016000

    Article  Google Scholar 

  • Ummels, B.C., Gibescu, M., Pelgrum, E., et al., 2007. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Conv., 22(1):44–51. http://dx.doi.org/10.1109/TEC.2006.889616

    Article  Google Scholar 

  • Wille-Haussmann, B., Erge, T., Wittwer, C., 2010. Decentralised optimisation of cogeneration in virtual power plants. Solar Energy, 84(4):604–611. http://dx.doi.org/10.1016/j.solener.2009.10.009

    Article  Google Scholar 

  • Xia, Y.H., Liu, J.Y., 2016a. Review of virtual power plant based on distributed generation. Electr. Power Autom. Equip., 36(4):100–106, 115 (in Chinese). http://dx.doi.org/10.16081/j.issn.1006-6047.2016.04.016

    Google Scholar 

  • Xia, Y.H., Liu, J.Y., 2016b. Optimal scheduling of virtual power plant with risk management. J. Power Technol., 96(1):49–56.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-hang Xia.

Additional information

ORCID: Yu-hang XIA, http://orcid.org/0000-0002-4586-4537

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Yh., Liu, Jy., Huang, Zw. et al. Carbon emission impact on the operation of virtual power plant with combined heat and power system. Frontiers Inf Technol Electronic Eng 17, 479–488 (2016). https://doi.org/10.1631/FITEE.1500467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500467

Keywords

CLC number

Navigation