Skip to main content
Log in

Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a velocity controller for the cutting system of a trench cutter (TC). The cutting velocity of a cutting system is affected by the unknown load characteristics of rock and soil. In addition, geological conditions vary with time. Due to the complex load characteristics of rock and soil, the cutting load torque of a cutter is related to the geological conditions and the feeding velocity of the cutter. Moreover, a cutter’s dynamic model is subjected to uncertainties with unknown effects on its function. In this study, to deal with the particular characteristics of a cutting system, a novel adaptive fuzzy integral sliding mode control (AFISMC) is designed for controlling cutting velocity. The model combines the robust characteristics of an integral sliding mode controller with the adaptive adjusting characteristics of an adaptive fuzzy controller. The AFISMC cutting velocity controller is synthesized using the backstepping technique. The stability of the whole system including the fuzzy inference system, integral sliding mode controller, and the cutting system is proven using the Lyapunov theory. Experiments have been conducted on a TC test bench with the AFISMC under different operating conditions. The experimental results demonstrate that the proposed AFISMC cutting velocity controller gives a superior and robust velocity tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, K.K., Chau, N.H.T., Truong, D.Q., 2007. Robust force control of a hybrid actuator using quantitative feedback theory. J. Mech. Sci. Technol., 21(12):2048–2058. http://dx.doi.org/10.1007/BF03177463

    Article  Google Scholar 

  • Busquets, E., Ivantysynova, M., 2015. Discontinuous projection-based adaptive robust control for displacementcontrolled actuators. J. Dyn. Syst. Meas. Contr., 137(8): 081007. http://dx.doi.org/10.1115/1.4030064

    Article  Google Scholar 

  • Cerman, O., 2013. Fuzzy model reference control with adaptation mechanism. Expert Syst. Appl., 40(13):5181–5187. http://dx.doi.org/10.1016/j.eswa.2013.03.014

    Article  Google Scholar 

  • Chen, C.Y., Liu, L.Q., Cheng, C.C., et al., 2008. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system. Contr. Eng. Pract., 16(6): 658–673. http://dx.doi.org/10.1016/j.conengprac.2007.08.005

    Article  Google Scholar 

  • Chiang, M.H., Lee, L.W., Tsai, J.J., 2004. The concurrent implementation of high velocity control performance and high energy efficiency for hydraulic injection moulding machines. Int. J. Adv. Manuf. Technol., 23(3):256–262. http://dx.doi.org/10.1007/s00170-003-1652-8

    Article  Google Scholar 

  • Chiang, M.H., Yeh, Y.P., Yang, F.L., et al., 2005. Integrated control of clamping force and energy-saving in hydraulic injection moulding machines using decoupling fuzzy sliding-mode control. Int. J. Adv. Manuf. Technol., 27(1):53–62. http://dx.doi.org/10.1007/s00170-004-2138-z

    Article  Google Scholar 

  • Daher, N., Ivantysynova, M., 2013. System synthesis and controller design of a novel pump controlled steer-bywire system employing modern control techniques. Proc. ASME/BATH Symp. on Fluid Power and Motion Control, p.1–10. http://dx.doi.org/10.1115/FPMC2013-4410

    Google Scholar 

  • Daher, N., Ivantysynova, M., 2014. An indirect adaptive velocity controller for a novel steer-by-wire system. J. Dyn. Syst. Meas. Contr., 136(5):051012. http://dx.doi.org/10.1115/1.4027172

    Article  Google Scholar 

  • Guo, K., Wei, J.H., Fang, J.H., et al., 2015. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer. Mechatronics, 27: 47–56. http://dx.doi.org/10.1016/j.mechatronics.2015.02.003

    Article  Google Scholar 

  • Kalyoncu, M., Haydim, M., 2009. Mathematical modelling and fuzzy logic based position control of an electrohydraulic servosystem with internal leakage. Mechatronics, 19(6):847–858. http://dx.doi.org/10.1016/j.mechatronics.2009.04.010

    Article  Google Scholar 

  • Lin, J., Huang, Z.Z., 2007. A hierarchical fuzzy approach to supervisory control of robot manipulators with oscillatory bases. Mechatronics, 17(10):589–600. http://dx.doi.org/10.1016/j.mechatronics.2007.07.008

    Article  Google Scholar 

  • Lin, Y., Shi, Y., Burton, R., 2013. Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans. Mech., 18(1):1–10. http://dx.doi.org/10.1109/TMECH.2011.2160959

    Article  Google Scholar 

  • Merritt, H.E., 1967. Hydraulic Control Systems. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Minav, T.A., Laurila, L.I.E., Pyrhönen, J.J., 2013. Analysis of electro-hydraulic lifting system’s energy efficiency with direct electric drive pump control. Autom. Constr., 30:144–150. http://dx.doi.org/10.1016/j.autcon.2012.11.009

    Article  Google Scholar 

  • Sha, D.H., Bajic, V.B., Yang, H.Y., 2002. New model and sliding mode control of hydraulic elevator velocity tracking system. Simul. Practice Theory, 9(6–8):365–385. http://dx.doi.org/10.1016/S1569-190X(02)00058-8

    Article  Google Scholar 

  • Shi, Y., Huang, J., Yu, B., 2013. Robust tracking control of networked control systems: application to a networked DC motor. IEEE Trans. Ind. Electron., 60(12):5864–5874. http://dx.doi.org/10.1109/TIE.2012.2233692

    Article  Google Scholar 

  • Truong, D.Q., Ahn, K.K., 2009. Force control for hydraulic load simulator using self-tuning grey predictor—fuzzy PID. Mechatronics, 19(2):233–246. http://dx.doi.org/10.1016/j.mechatronics.2008.07.007

    Article  Google Scholar 

  • Truong, D.Q., Ahn, K.K., 2011. Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter. Expert Syst. Appl., 38(5):5879–5894. http://dx.doi.org/10.1016/j.eswa.2010.11.035

    Article  Google Scholar 

  • Wang, D.Y., Lin, X., Zhang, Y., 2011. Fuzzy logic control for a parallel hybrid hydraulic excavator using genetic algorithm. Autom. Constr., 20(5):581–587. http://dx.doi.org/10.1016/j.autcon.2010.11.024

    Article  Google Scholar 

  • Wang, L.K., Book, W.J., Huggins, J.D., 2012. Application of singular perturbation theory to hydraulic pump controlled systems. IEEE/ASME Trans. Mech., 17(2):251–259. http://dx.doi.org/10.1109/TMECH.2010.2096230

    Article  Google Scholar 

  • Wang, X.J., Wang, S.P., Zhao, P., 2012. Adaptive fuzzy torque control of passive torque servo systems based on small gain theorem and input-to-state stability. Chin. J. Aeronaut., 25(6):906–916. http://dx.doi.org/10.1016/S1000-9361(11)60461-5

    Article  Google Scholar 

  • Wei, J.H., Guo, K., Fang, J.H., et al., 2015. Nonlinear supply pressure control for a variable displacement axial piston pump. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng., 229(7):614–624. http://dx.doi.org/10.1177/0959651815577546

    Google Scholar 

  • Wei, L., Fang, F., Shi, Y., 2014. Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator. IEEE Trans. Contr. Syst. Technol., 22(1):369–377. http://dx.doi.org/10.1109/TCST.2013.2250504

    Article  Google Scholar 

  • Wu, H.W., Lee, C.B., 1995. Self-tuning adaptive speed control of a pump/inverter-controlled hydraulic motor system. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng., 209(29):101–114. http://dx.doi.org/10.1243/PIME-PROC-1995-209-37

    Google Scholar 

  • Zhang, H., Shi, Y., Mu, B.X., 2013. Optimal H8-based linearquadratic regulator tracking control for discrete-time Takagi-Sugeno fuzzy systems with preview actions. J. Dyn. Syst. Meas. Contr., 135(4):044501. http://dx.doi.org/10.1115/1.4024007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-hui Fang.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2012AA041801)

ORCID: Qi-yan TIAN, http://orcid.org/0000-0002-8392-7252

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Qy., Wei, Jh., Fang, Jh. et al. Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter. Frontiers Inf Technol Electronic Eng 17, 55–66 (2016). https://doi.org/10.1631/FITEE.15a0160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.15a0160

Keywords

CLC number

Navigation