Skip to main content
Log in

A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mode, and phase-shift control mode. Under this control strategy, different input voltages determine the different operating modes of the circuit. When the input voltage is very low, it works in a full-bridge circuit and variable frequency mode (FB_VF mode). When the input voltage rises to a certain level, it shifts to a full-bridge circuit and phase-shifting control mode (FB_PS mode). When the input voltage further increases, it shifts into a half-bridge circuit and variable frequency mode (HB_VF mode). Such shifts are enabled by the digital signal processor (DSP), which means that no auxiliary circuit is needed, just a modification of the software. From light load to heavy load, the primary MOSFET for the LLC resonant converter can realize zero-voltage switching (ZVS), and the secondary rectifier diode can realize zero-current switching (ZCS). With an LLC resonant converter prototype with a 300 W rated power and a 450 V output voltage, as well as a resonant converter with 20–120 V input voltage, the experiments verified the proposed control strategy. Experimental results showed that under this control strategy, the maximum converter efficiency reaches 95.7% and the range of the input voltage expands threefold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chen, W., Hong, X.Y., Wang, S.R., et al., 2010. High efficiency soft-switched step-up DC-DC converter with hybrid mode LLC+C resonant tank. 25th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1358–1364. http://dx.doi.org/10.1109/APEC.2010.5433406

    Google Scholar 

  • Fang, X., Hu, H.B., Shen, J., et al., 2012. An optimal design of the LLC resonant converter based on peak gain estimation. 27th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1286–1291. http://dx.doi.org/10.1109/APEC.2012.6165984

    Google Scholar 

  • Fang, Y., Xu, D.H., Zhang, Y.J., et al., 2007. Design of high power density LLC resonant converter with extra wide input range. 22nd Annual IEEE Applied Power Electronics Conf., p.976–981. http://dx.doi.org/10.1109/APEX.2007.357633

    Google Scholar 

  • Hamamura, S., Ninomiya, T., Yamamoto, M., et al., 2003. Combined PWM and PFM control for universal line voltage of a piezoelectric transformer off-line converter. IEEE Trans. Power Electron., 18(1): 270–277. http://dx.doi.org/10.1109/TPEL.2002.807177

    Article  Google Scholar 

  • Hu, J., Lin, H.P., Lu, Z.Y., et al., 2015. Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver. Front. Inform. Technol. Electron. Eng., 16(8): 679–693. http://dx.doi.org/10.1631/FITEE.1500054

    Article  Google Scholar 

  • Jang, J., Joung, M., Choi, B., et al., 2012. Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations. IET Power Electron., 5(6): 755–764. http://dx.doi.org/10.1049/iet-pel.2011.0289

    Article  Google Scholar 

  • Jiang, Z.H., 2006. Power management of hybrid photovoltaic—fuel cell power systems. IEEE Power Engineering Society General Meeting, p.3458–3463. http://dx.doi.org/10.1109/PES.2006.1709000

    Google Scholar 

  • Jung, J.H., Kwon, J.G., 2007. Theoretical analysis and optimal design of LLC resonant converter. European Conf. on Power Electronics and Applications, p.1134–1143. http://dx.doi.org/10.1109/EPE.2007.4417639

    Google Scholar 

  • Liang, Z.G., Guo, R., Wang, G.Y., et al., 2010. A new wide input range high efficiency photovoltaic inverter. IEEE Energy Conversion Congress and Exposition, p.2937–2943. http://dx.doi.org/10.1109/ECCE.2010.5618217

    Google Scholar 

  • Lin, B.R., Nian, Y.B., Shiau, T.Y., 2013. Resonant converter with fixed frequency control. IEEE Region 10 Conf. TENCON, p.1–6. http://dx.doi.org/10.1109/TENCON.2013.6718908

    Google Scholar 

  • Rajaei, A., Mohamadian, M., Varjani, A.Y., 2013. Viennarectifier-based direct torque control of PMSG for wind energy application. IEEE Trans. Ind. Electron., 60(7): 2919–2929. http://dx.doi.org/10.1109/TIE.2012.2227905

    Article  Google Scholar 

  • Steigerwald, R.L., 1988. A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron., 3(2): 174–182. http://dx.doi.org/10.1109/63.4347

    Article  Google Scholar 

  • Song, S.H., Kang, S.I., Hahm, N.K., 2003. Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion systems. 18th Annual IEEE Applied Power Electronics Conf. and Exposition, p.154–158. http://dx.doi.org/10.1109/APEC.2003.1179207

    Google Scholar 

  • Tian, J., Su, C., Soltani, M., et al., 2014. Active power dispatch method for a wind farm central controller considering wake effect. 40th Annual Conf. of the IEEE Industrial Electronics Society, IECON, p.5450–5456. http://dx.doi.org/10.1109/IECON.2014.7049333

    Google Scholar 

  • Walker, G.R., Pierce, J.C., 2006. PhotoVoltaic DC-DC module integrated converter for novel cascaded and bypass grid connection topologies—design and optimisation. 37th IEEE Power Electronics Specialists Conf. Records, p.1767–1773. http://dx.doi.org/10.1109/PESC.2006.1712242

    Google Scholar 

  • Walker, G.R., Sernia, P.C., 2004. Cascaded DC-DC converter connection of photovoltaic modules. IEEE Trans. Power Electron., 19(4): 1130–1139. http://dx.doi.org/10.1109/TPEL.2004.830090

    Article  Google Scholar 

  • Wang, C.X., Lu, Z.X., Qiao, Y., 2013. A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems. IEEE Trans. Power Syst., 28(1): 236–245. http://dx.doi.org/10.1109/TPWRS.2012.2205280

    Article  Google Scholar 

  • Yang, B., 2003. Topology Investigation of Front End DC/DC Converter for Distributed Power System. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.

    Google Scholar 

  • Zhang, Z., Thomsen, O.C., Andersen, M.A.E., 2009. A DC-DC converter with wide input voltage range for fuel cell and supercapacitor application. Int. Conf. on Power Electronics and Drive Systems, p.1324–1329. http://dx.doi.org/10.1109/PEDS.2009.5385904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-pin Lin or Zheng-yu Lu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51177148 and 51407151)

ORCID: Zheng-yu LU, http://orcid.org/0000-0003-1032-2938

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Hp., Jin, Xg., Xie, L. et al. A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range. J. Zhejiang Univ. - Sci. C 18, 410–422 (2017). https://doi.org/10.1631/FITEE.1600029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1600029

Key words

CLC number

Navigation