Skip to main content
Log in

Reversible binary subtractor design using quantum dot-cellular automata

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In the field of nanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (CMOS) circuit. QCA has high device density, high operating speed, and extremely low power consumption. Reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah-Al-Shafi, M., 2016. Synthesis of Peres and R logic circuits in nanoscopic scale. Commun. Appl. Electron., 4(1):20–25. https://doi.org/10.5120/cae2016652004

    Article  Google Scholar 

  • Akter, R., Islam, N., Waheed, S., 2015. Implementation of reversible logic gate in quantum dot cellular automata. Int. J. Comput. Appl., 109(1):41–44. https://doi.org/10.5120/19155-0591

    Google Scholar 

  • Arjmand, M.M., Soryani, M., Navi, K., 2013. Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circ. Dev. Syst., 7(5):263–272. https://doi.org/10.1049/iet-cds.2012.0366

    Article  Google Scholar 

  • Bahar, A.N., Waheed, S., Hossain, N., 2015. A new approach of presenting reversible logic gate in nanoscale. Springer-Plus, 4:153. https://doi.org/10.1186/s40064-015-0928-4

    Article  Google Scholar 

  • Das, J.C., De, D., 2012. Quantum dot-cellular automata based cipher text design for nano-communication. Proc. Int. Conf. on Radar, Communication and Computing, p.224–229. https://doi.org/10.1109/ICRCC.2012.6450583

    Google Scholar 

  • Das, J.C., De, D., 2015. Reversible binary to grey and grey to binary code converter using QCA. IETE J. Res., 61(3): 223–229. https://doi.org/10.1080/03772063.2015.1018845

    Article  Google Scholar 

  • Das, J.C., De, D., 2016a. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inform. Technol. Electron. Eng., 17(3):224–236. https://doi.org/10.1631/FITEE.1500079

    Google Scholar 

  • Das, J.C., De, D., 2016b. User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab. J. Sci. Eng., 41(3):773–784. https://doi.org/10.1007/s13369-015-1870-z

    Article  MathSciNet  Google Scholar 

  • Das, J.C., De, D., 2016c. Optimized design of reversible gates in quantum dot-cellular automata: a review. Rev. Theor. Sci., 4(3):279–286. https://doi.org/10.1166/rits.2016.1062

    Article  Google Scholar 

  • Das, J.C., De, D., 2016d. Novel low power reversible encoder design using quantum-dot cellular automata. J. Nanoelectron. Optoelectron., 11(4):450–458. https://doi.org/10.1166/jno.2016.1932

    Article  Google Scholar 

  • Das, J.C., De, D., 2016e. Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microproc. Microsyst., 42:10–23. https://doi.org/10.1016/j.micpro.2015.12.004

    Article  Google Scholar 

  • Das, J.C., De, D., 2016f. Reversible comparator design using quantum dot-cellular automata. IETE J. Res., 62(3):323–330. https://doi.org/10.1080/03772063.2015.1088407

    Article  Google Scholar 

  • Das, J.C., Debnath, B., De, D., 2015. Image steganography using quantum dot-cellular automata. Quant. Matter, 4(5):504–517. https://doi.org/10.1166/qm.2015.1225

    Article  Google Scholar 

  • Das, K., De, D., 2010a. Novel approach to design a testable conservative logic gate for QCA implementation. IEEE 2nd Int. Advance Computing Conf., p.82–87. https://doi.org/10.1109/IADCC.2010.5423034

    Google Scholar 

  • Das, K., De, D., 2010b. Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA. Int. J. Nanosci., 9(3):201–214. https://doi.org/10.1142/S0219581X10006594

    Article  Google Scholar 

  • Das, K., De, D., 2011. Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. Mol. Simul., 37(3):210–225. https://doi.org/10.1080/08927022.2010.536543

    Article  Google Scholar 

  • Das, K., De, D., De, M., 2013. Realisation of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett., 8(5):258–263. https://doi.org/10.1049/mnl.2012.0618

    Article  Google Scholar 

  • Debnath, B, Das, J.C., De, D., 2017. Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circ. Dev. Syst., 11(1):58–67. https://doi.org/10.1049/iet-cds.2015.0245

    Article  Google Scholar 

  • Dehghan, B., Roozbeh, A., Zare, J., 2014. Design of low power comparator using DG gate. Circ. Syst., 5(1):7–12. https://doi.org/10.4236/cs.2014.51002

    Article  Google Scholar 

  • Dey, A., Das, K., De, D., et al., 2012. Probabilistic defect analysis model for quantum dot cellular automata design at analytical phase. Int. J. Comput. Appl., 55(7):33–41. https://doi.org/10.5120/8768-2693

    Google Scholar 

  • Farazkish, R., Khodaparast, F., 2015. Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst., 39(6):426–433. https://doi.org/10.1016/j.micpro.2015.04.004

    Article  Google Scholar 

  • Ghosh, B., Agarwal, A., Akram, M.W., 2014a. An efficient quantum-dot cellular automata multi-bit adder design using 5-input majority gate. Quant. Matter, 3(5):448–453. https://doi.org/10.1166/qm.2014.1145

    Article  Google Scholar 

  • Ghosh, B., Giridhar, M., Nagaraju, M., et al., 2014b. Ripple carry adder using five input majority gates in quantum dot cellular automata. Quant. Matter, 3(6):495–498. https://doi.org/10.1166/qm.2014.1152

    Article  Google Scholar 

  • Gladshtein, M., 2013. Design and simulation of novel adder/subtractors on quantum-dot cellular automata: radical departure from Boolean logic circuits. Microelectron. J., 44(6):545–552. https://doi.org/10.1016/j.mejo.2013.03.013

    Article  Google Scholar 

  • Hashemi, S., Navi, K., 2014. Reversible multiplexer design in quantum-dot cellular automata. Quant. Matter, 3(6):523–528. https://doi.org/10.1166/qm.2014.1158

    Article  Google Scholar 

  • Hayati, M., Rezaei, A., 2014. New approaches for modeling and simulation of quantum-dot cellular automata. J. Comput. Electron., 13(2):537–546. https://doi.org/10.1007/s10825-014-0565-0

    Article  Google Scholar 

  • Hennessy, K., Lent, C.S., 2001. Clocking of molecular quantum- dot cellular automata. J. Vac. Sci. Technol. B, 19(5):1752–1755. https://doi.org/10.1116/1.1394729

    Article  Google Scholar 

  • Hung, W.N.N., Song, X.Y., Yang, G.W., et al., 2006. Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 25(9): 1652–1663. https://doi.org/10.1109/TCAD.2005.858352

    Article  Google Scholar 

  • ITRS, 2005. International Technology Roadmap for Semiconductors. http://www.itrs.net

    Google Scholar 

  • Janez, M., Pecar, P., Mraz, M., 2012. Layout design of manufacturable quantum-dot cellular automata. Microelectron. J., 43(7):501–513. https://doi.org/10.1016/j.mejo.2012.03.007

    Article  Google Scholar 

  • Karim, F., Walus, K., 2014. Calculating the steady-state polarizations of quantum cellular automata (QCA) circuits. J. Comput. Electron., 13(3):569–584. https://doi.org/10.1007/s10825-014-0573-0

    Article  Google Scholar 

  • Kianpour, M., Sabbaghi-Nadooshan, R., 2014. A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst., 38(8):1046–1062. https://doi.org/10.1016/j.micpro.2014.08.001

    Article  Google Scholar 

  • Lakshmi, S.K., Rajakumar, G., Saminathan, A.G., 2015. Design and analysis of sequential circuits using nanotechnology based quantum dot cellular automata. J. Nanoelectron. Optoelectron., 10(5):601–610. https://doi.org/10.1166/jno.2015.1813

    Article  Google Scholar 

  • Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5(3):183–191. https://doi.org/10.1147/rd.53.0183

    Article  MathSciNet  Google Scholar 

  • Lent, C.S., Tougaw, P.D., 1997. A device architecture for computing with quantum dots. Proc. IEEE, 85(4):541–557. https://doi.org/10.1109/5.573740

    Article  Google Scholar 

  • Lent, C.S., Tougaw, P.D., Porod, W., et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49–57. https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  • Ma, X.J., Huang, J., Metra, C., et al., 2009. Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test., 25(1):39–54. https://doi.org/10.1007/s10836-008-5078-y

    Article  Google Scholar 

  • Mano, M.M., Ciletti, M.D., 2011. Digital Design: with an Introduction to the Verilog HDL. Prentice Hall, India.

    Google Scholar 

  • Orlov, A.O., Amlani, I., Bernstein, G.H., et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928–930. https://doi.org/10.1126/science.277.5328.928

    Article  Google Scholar 

  • Ottavi, M., Pontarelli, S., DeBenedictis, E.P., et al., 2011. Partially reversible pipelined QCA circuits: combining low power with high throughput. IEEE Trans. Nanotechnol., 10(6):1383–1393. https://doi.org/10.1109/TNANO.2011.2147796

    Article  Google Scholar 

  • Pradhan, N., De, D., 2013. Spin transfer torque driven magnetic QCA cells. In: Giri, P., Goswami, D., Perumal, A. (Eds.), Advanced Nanomaterials and Nanotechnology. Springer Berlin Heidelberg, p.561–569. https://doi.org/10.1007/978-3-642-34216-5_56

    Google Scholar 

  • Saravanan, P., Kalpana, P., 2013. A novel and systematic approach to implement reversible gates in quantum dot cellular automata. WSEAS Trans. Circ. Syst., 12(10):307–316.

    Google Scholar 

  • Sen, B., Dutta, M., Sikdar, B.K., 2014. Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron. J., 45(2):239–248. https://doi.org/10.1016/j.mejo.2013.11.008

    Article  Google Scholar 

  • Shah, N.A., Khanday, F.A., Iqbal, J., 2012. Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. Commun. Inform. Sci. Manag. Eng., 2(4):8–18.

    Google Scholar 

  • Smolin, J.A., DiVincenzo, D.P., 1996. Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A, 53(4):2855–2856. https://doi.org/10.1103/PhysRevA.53.2855

    Article  Google Scholar 

  • Thapliyal, H., Ranganathan, N., 2009a. Conservative QCA gate (CQCA) for designing concurrently testable molecular QCA circuits. Proc. 22nd Int. Conf. on VLSI Design, p.511–516. https://doi.org/10.1109/VLSI.Design.2009.75

    Google Scholar 

  • Thapliyal, H., Ranganathan, N., 2009b. Design of efficient reversible binary subtractors based on a new reversible gate. IEEE Computer Society Annual Symp. on VLSI, p.229–234. https://doi.org/10.1109/ISVLSI.2009.49

    Google Scholar 

  • Thapliyal, H., Ranganathan, N., 2010. Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol., 9(1):62–69. https://doi.org/10.1109/TNANO.2009.2025038

    Article  Google Scholar 

  • Thapliyal, H., Srinivas, M.B., Arabnia, H., 2005. Reversible logic synthesis of half, full and parallel subtractors. Proc. Int. Conf. on Embedded Systems and Applications, p.165–181.

    Google Scholar 

  • Thapliyal, H., Ranganathan, N., Kotiyal, S., 2013. Design of testable reversible sequential circuits. IEEE Trans. VLSI Syst., 21(7):1201–1209. https://doi.org/10.1109/TVLSI.2012.2209688

    Article  Google Scholar 

  • Vankamamidi, V., Ottavi, M., Lombardi, F., 2005. A linebased parallel memory for QCA implementation. IEEE Trans. Nanotechnol., 4(6):690–698. https://doi.org/10.1109/TNANO.2005.858589

    Article  Google Scholar 

  • Yang, X.K., Cai, L., Kang, Q., et al., 2012. Clocking misalignment tolerance of pipelined magnetic QCA architectures. Microelectron. J., 43(6):386–392. https://doi.org/10.1016/j.mejo.2012.02.005

    Article  Google Scholar 

  • Zhang, R.M., Walus, K., Wang, W., et al., 2004. A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol., 3(4):443–450. https://doi.org/10.1109/TNANO.2004.834177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J.C., De, D. Reversible binary subtractor design using quantum dot-cellular automata. Frontiers Inf Technol Electronic Eng 18, 1416–1429 (2017). https://doi.org/10.1631/FITEE.1600999

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1600999

Key words

CLC number

Navigation