Skip to main content
Log in

Secrecy performance analysis of single-input multiple-output generalized-K fading channels

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this paper, the transmission of confidential messages through single-input multiple-output (SIMO) independent and identically generalized-K (K G) fading channels is considered, where the eavesdropper overhears the transmission from the transmitter to the receiver. Both the receiver and the eavesdropper are equipped with multiple antennas, and both active and passive eavesdroppings are considered where the channel state information of the eavesdropper’s channel is or is not available at the transmitter. The secrecy performance of SIMO K G systems is investigated. Analytical expressions for secrecy outage probability and average secrecy capacity of SIMO systems are derived via two different methods, in which K G distribution is approximated by the Gamma and mixture Gamma distributions, respectively. Numerical results are presented and verified via the Monte-Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdi, A., Kaveh, M., 1998. K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electron. Lett., 34(9): 851–852. http://dx.doi.org/10.1049/el:19980625

    Article  Google Scholar 

  • Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover Press, New York.

    MATH  Google Scholar 

  • Adamchik, V.S., Marichev, O.I., 1990. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system. Proc. Int. Symp. on Symbolic and Algebraic Computation, p.212–224. http://dx.doi.org/10.1145/96877.96930

  • Al-Ahmadi, S., Yanikomeroglu, H., 2010a. On the approximation of the generalized-K distribution by a Gamma distribution for modeling composite fading channels. IEEE Trans. Wirel. Commun., 9(2): 706–713. http://dx.doi.org/10.1109/TWC.2010.02.081266

    Article  Google Scholar 

  • Al-Ahmadi, S., Yanikomeroglu, H., 2010b. On the approximation of the PDF of the sum of independent generalized-K RVs by another generalized-K PDF with applications to distributed antenna systems. Proc. IEEE Wireless Communications and Networking Conf., p.1–6. http://dx.doi.org/10.1109/WCNC.2010.5506178

    Google Scholar 

  • Ansari, I.S., Al-Ahmadi, S., Yilmaz, F., et al., 2011. A new formula for the BER of binary modulations with dualbranch selection over generalized-K composite fading channels. IEEE Trans. Commun., 59(10): 2654–2658. http://dx.doi.org/10.1109/TCOMM.2011.063011.100303A

    Article  Google Scholar 

  • Ata, S.Ö., Altunbas, I., 2015. Relay antenna selection for V2V communications using PLNC over cascaded fading channels. Proc. Int. Wireless Communications and Mobile Computing Conf., p.1336–1340. http://dx.doi.org/10.1109/IWCMC.2015.7289276

    Google Scholar 

  • Atapattu, S., Tellambura, C., Jiang, H., 2011. A mixture Gamma distribution to model the SNR of wireless channels. IEEE Trans. Wirel. Commun., 10(12): 4193–4203. http://dx.doi.org/10.1109/TWC.2011.111210.102115

    Article  Google Scholar 

  • Bithas, P.S., Rontogiannis, A.A., 2015. Mobile communication systems in the presence of fading/shadowing, noise and interference. IEEE Trans. Commun., 63(3): 724–737. http://dx.doi.org/10.1109/TCOMM.2015.2390625

    Article  Google Scholar 

  • Bithas, P.S., Sagias, N.C., Mathiopoulos, P.T., et al., 2006. On the performance analysis of digital communications over generalized-K fading channels. IEEE Commun. Lett., 10(5): 353–355. http://dx.doi.org/10.1109/LCOMM.2006.1633320

    Article  Google Scholar 

  • Bloch, M., Barros, J., Rodrigues, M.R.D., et al., 2008. Wireless information-theoretic security. IEEE Trans. Inform. Theory, 54(6): 2515–2534. http://dx.doi.org/10.1109/TIT.2008.921908

    Article  MathSciNet  Google Scholar 

  • Chatzidiamantis, N.D., Karagiannidis, G.K., 2011. On the distribution of the sum of Gamma-Gamma variates and applications in RF and optical wireless communications. IEEE Trans. Commun., 59(5): 1298–1308. http://dx.doi.org/10.1109/TCOMM.2011.020811.090205

    Article  Google Scholar 

  • Cheng, W., 2013. Performance analysis and comparison of dual-hop amplify-and-forward relaying over mixture Gamma and generalized-K fading channels. Proc. Int. Conf. on Wireless Communications & Signal Processing, p.1–6. http://dx.doi.org/10.1109/WCSP.2013.6677092

    Google Scholar 

  • Gradshteyn, I., Ryzhik, I., 2007. Table of Integrals, Series, and Products (7th Ed.) Academic Press, USA.

    MATH  Google Scholar 

  • Jiang, Y., Zhu, J., Zou, Y., 2015. Secrecy outage analysis of multi-user multi-eavesdropper cellular networks in the face of cochannel interference. Dig. Commun. Netw., 1(1): 68–74. http://dx.doi.org/10.1016/j.dcan.2015.02.002

    Article  Google Scholar 

  • Jung, J., Lee, S.R., Park, H., et al., 2013. Diversity analysis over composite fading channels using a mixture Gamma distribution. Proc. IEEE Int. Conf. on Communications, p.5824–5828. http://dx.doi.org/10.1109/ICC.2013.6655526

    Google Scholar 

  • Jung, J., Lee, S.R., Park, H., et al., 2014. Capacity and error probability analysis of diversity reception schemes over generalized-K fading channels using a mixture Gamma distribution. IEEE Trans. Wirel. Commun., 13(9): 4721–4730. http://dx.doi.org/10.1109/TWC.2014.2331691

    Article  Google Scholar 

  • Laourine, A., Alouini, M.S., Affes, S., et al., 2009. On the performance analysis of composite multipath/ shadowing channels using the G-distribution. IEEE Trans. Commun., 57(4): 1162–1170. http://dx.doi.org/10.1109/TCOMM.2009.04.070258

    Article  Google Scholar 

  • Lei, H., Gao, C., Ansari, I., et al., 2015a. On physical layer security over SIMO generalized-K fading channels. IEEE Trans. Veh. Technol., 65(9): 7780–7785. http://dx.doi.org/10.1109/TVT.2015.2496353

    Article  Google Scholar 

  • Lei, H., Gao, C., Guo, Y., et al., 2015b. On physical layer security over generalized Gamma fading channels. IEEE Commun. Lett., 19(7): 1257–1260. http://dx.doi.org/10.1109/LCOMM.2015.2426171

    Article  Google Scholar 

  • Lei, H., Zhang, H., Ansari, I., et al., 2016a. Performance analysis of physical layer security over generalized-K fading channels using a mixture Gamma distribution. IEEE Commun. Lett., 20(2): 408–411. http://dx.doi.org/10.1109/LCOMM.2015.2504580

    Article  Google Scholar 

  • Lei, H., Zhang, H., Ansari, I., et al., 2016b. Secrecy outage analysis for SIMO underlay cognitive radio networks over generalized-K fading channels. IEEE Signal Process. Lett., 23(8): 1106–1110. http://dx.doi.org/10.1109/LSP.2016.2587323

    Google Scholar 

  • Liu, H., Zhao, H., Jiang, H., et al., 2016. Physical-layer secrecy outage of spectrum sharing CR systems over fading channels. Sci. China Inform. Sci., 59:102308. http://dx.doi.org/10.1007/s11432-015-5451-2

    Article  Google Scholar 

  • Liu, X., 2013. Probability of strictly positive secrecy capacity of the Weibull fading channel. Proc. IEEE Global Communications Conf., p.659–664. http://dx.doi.org/10.1109/GLOCOM.2013.6831147

  • Pan, G., Tang, C., Zhang, X., et al., 2016. Physical-layer security over non-small-scale fading channels. IEEE Trans. Veh. Technol., 65(3): 1326–1339. http://dx.doi.org/10.1109/TVT.2015.2412140

    Article  Google Scholar 

  • Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I., 1992. Integrals and Series, Volume 2: Special Functions. Gordon and Breach Science Publishers, New York.

    MATH  Google Scholar 

  • Shankar, P.M., 2004. Error rates in generalized shadowed fading channels. Wirel. Pers. Commun., 28(3): 233–238. http://dx.doi.org/10.1023/B:wire.0000032253.68423.86

    Article  Google Scholar 

  • Stuber, G.L., 2011. Principles of Mobile Communication. Springer Science & Business Media, New York.

    Google Scholar 

  • Wang, L., Elkashlan, M., Huang, J., et al., 2014. Secure transmission with antenna selection in MIMO Nakagami-m fading channels. IEEE Trans. Wirel. Commun., 13(11): 6054–6067. http://dx.doi.org/10.1109/TWC.2014.2359877

    Article  Google Scholar 

  • Yadav, S., Upadhyay, P.K., 2013. Performance analysis of two-way A Frelaying systems over cascaded generalized-K fading channels. Proc. National Conf. on Communications, p.1–5. http://dx.doi.org/10.1109/NCC.2013.6487901

    Google Scholar 

  • Yang, N., Wang, L., Geraci, G., et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag., 53(4): 20–27. http://dx.doi.org/10.1109/MCOM.2015.7081071

    Article  Google Scholar 

  • Zou, Y., Wang, X., Shen, W., 2013. Optimal relay selection for physical-layer security in cooperative wireless networks.

  • IEEE J. Sel. Areas Commun., 31(10): 2099–2111. http://dx.doi.org/10.1109/JSAC.2013.131011

  • Zou, Y., Champagne, B., Zhu, W.P., et al., 2015a. Relayselection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans. Commun., 63(1): 215–228. http://dx.doi.org/10.1109/TCOMM.2014.2377239

    Article  Google Scholar 

  • Zou, Y., Zhu, J., Wang, X., et al., 2015b. Improving physicallayer security in wireless communications using diversity techniques. IEEE Netw., 29(1): 42–48. http://dx.doi.org/10.1109/MNET.2015.7018202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Additional information

Project supported in part by the National Natural Science Foundation of China (Nos. 61471076 and 61401372), the Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT1299), the Natural Science Foundation Project of CQ CSTC (No. cstc2013jcyjA40040), the Project of Fundamental and Frontier Research Plan of Chongqing, China (No. cstc2015jcyjBX0085), the Special Fund of Chongqing Key Laboratory (CSTC), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (No. KJ1600413), the Research Fund for the Doctoral Program of Higher Education of China (No. 20130182120017), and the Fundamental Research Funds for the Central Universities, China (No. XDJK2015B023). Parts of this publication, specifically Sections 1, 3, and 4, were made possible by PDRA (Post- Doctoral Research Award) from the Qatar National Research Fund (QNRF) (a member of Qatar Foundation (QF)), Qatar (No. PDRA1-1227-13029)

A preliminary version was presented at the 78th IEEE Vehicular Technology Conference, Montréal, Canada, Sept. 18–21, 2016

ORCID: Chao GAO, http://orcid.org/0000-0002-7256-7167

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Hj., Ansari, I.S., Gao, C. et al. Secrecy performance analysis of single-input multiple-output generalized-K fading channels. Frontiers Inf Technol Electronic Eng 17, 1074–1084 (2016). https://doi.org/10.1631/FITEE.1601070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601070

Keywords

CLC number

Navigation