Skip to main content

Advertisement

Log in

Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We present the design and analysis of a novel modified H-shaped split ring resonator (SRR) metamaterial. It has negative permeability and permittivity characteristics with multi-band resonance for the X, Ku, and Ka frequency bands. Different configurations of the patch antenna have been analyzed with different orientations and positions of the metamaterial. Optimized performance was achieved with the new shape of the metamaterial antenna with an appreciable 9 dB gain, 77 GHz bandwidth, 100% radiation efficiency, and 65% reduction in active area. The second-order fractal metamaterial antenna achieves high miniaturization on the order of 1/21. This is truly a boon in the communications world, as a sharp beam with smaller physical dimensions is urgently required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balanis, C.A., 1997. Antenna Theory. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Barasara, D.J., Prajapati, J.C., Dethalia, A.M., 2012. Multi-frequency fractal antenna. Int. J. Sci. Eng. Res., 3(7): 1–3.

    Google Scholar 

  • Benosman, H., Hacene, N.B., 2012. Design and simulation of double “S” shaped metamaterial. Int. J. Comput. Sci., 9(2): 534–537.

    Google Scholar 

  • Best, S.R., Morrow, J.D., 2002. The effectiveness of space-filling fractal geometry in lowering resonant frequency. IEEE Antennas Wirel. Propag. Lett., 1: 112–115. https://doi.org/10.1109/LAWP.2002.806050

    Article  Google Scholar 

  • Chen, H.S., Ran, L.X., Huangfu, J.T., et al., 2004. Left-handed materials composed of only S-shaped resonators. Phys. Rev. E, 70(5): 057605. https://doi.org/10.1103/PhysRevE.70.057605

    Article  Google Scholar 

  • Cohen, N., 1995. Fractal antennas part-1: introduction and the fractal Quad. Commun. Quat. Summ., p.7–22.

    Google Scholar 

  • Cohen, N., 1997. Fractal antenna applications in wireless telecommunications. Proc. Electronic Industries Forum of New England, p.43–49. https://doi.org/10.1109/EIF.1997.605374

    Chapter  Google Scholar 

  • Dwivedi, S., Mishra, V., Kosta, Y.P., 2013. Design and Comparative analysis of a metamaterial included slotted patch antenna with a metamaterial cover over patch. Int. J. Recent Technol. Eng., 1(6): 37–41.

    Google Scholar 

  • Ekmekçi, E., Turhan-Sayan, G., 2007. Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using S-parameters. Proc. 5th Int. Conf. on Electrical and Electronics Engineering, p.5–9.

    Google Scholar 

  • Gianvittorio, J.P., Rahmat-Samii, Y., 2002. Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag., 44(1): 20–36. https://doi.org/10.1109/74.997888

    Article  Google Scholar 

  • Grover, F.W., 1946. Inductance Calculations: Working Formulas and Tables. Dover Publication, Inc., New York, USA.

    Google Scholar 

  • Gupta, K.C., 1988. Broadbanding Technique for Microstrip Patch Antennas: a Review. Technical Report No. 98, University of Colorado, CO.

    Google Scholar 

  • Harrington, R.F., 1960. Effect of antenna size on gain, band-width, and efficiency. J. Res. Nat. Bur. Stand. D: Radio Propag., 64D(1):1. https://doi.org/10.6028/jres.064D.003

    MathSciNet  MATH  Google Scholar 

  • Islam, S.S., Faruque, M.R.I., Islam, M.T., 2014. The design and analysis of a novel split-H-shaped metamaterial for multi-band microwave applications. Materials, 7(7): 4994–5011. https://doi.org/10.3390/ma7074994

    Article  Google Scholar 

  • Mahatthanajatuphat, C., Saleekaw, S., Akkaraekthalin, P., et al., 2009. A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application. Prog. Electromagn. Res., 89: 57–74. https://doi.org/10.2528/PIER08111907

    Article  Google Scholar 

  • Mallik, A., Kundu, S., Goni, M.O., 2013. Design of a novel two-rectangular U-shaped double negative metamaterial. Int. Conf. on Informatics, Electronics & Vision, p.1–6. https://doi.org/10.1109/ICIEV.2013.6572646

    Google Scholar 

  • Nordin, M.A.W., Islam, M.T., Misran, N., 2013. Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell. Prog. Electromagn. Res., 136: 157–173. https://doi.org/10.2528/PIER12100708

    Article  Google Scholar 

  • Paul, C.R., 2009. Inductance: Loop and Partial. Wiley-IEEE Press, New Jersey, USA.

    Book  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., et al., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol., 47(11): 2075–2084. https://doi.org/10.1109/22.798002

    Article  Google Scholar 

  • Pozar, D.M., 1992. Microstrip antennas. Proc. IEEE, 80(1): 79–91. https://doi.org/10.1109/5.119568

    Article  Google Scholar 

  • Saha, C., Siddiqui, J.Y., 2011. Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. Int. J. RF Microw. Comput. Aided Eng., 21(4): 432–438. https://doi.org/10.1002/mmce.20533

    Article  Google Scholar 

  • Saraswat, R.K., Kumar, M., 2016. Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Prog. Electromagn. Res. B, 65: 65–80. https://doi.org/10.2528/PIERB15112703

    Article  Google Scholar 

  • Schantz, H., 2005. The Art and Science of Ultra-Wideband Antennas. Artech House Publishers.

    Google Scholar 

  • Singh, K., Grewal, V., Saxena, R., 2009. Fractal antennas: a novel miniaturization technique for wireless communications. Int. J. Recent Trends Eng., 2(5): 172–176.

    Google Scholar 

  • Vinoy, K.J., 2002. Fractal Shaped Antenna Elements for Wide- and Multi-band Wireless Applications. PhD Thesis, The Pennsylvania State University, Pennsylvania, USA.

    Google Scholar 

  • Yaghjian, A.D., Best, S.R., 2005. Impedance, bandwidth, and Q of antennas. IEEE Trans. Antennas Propag., 53(4): 1298–1324. https://doi.org/10.1109/TAP.2005.844443

    Article  Google Scholar 

  • Ziolkowski, R.W., 2003. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag., 51(7): 1516–1529. https://doi.org/10.1109/TAP.2003.813622

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parul Dawar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawar, P., Raghava, N.S. & De, A. Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications. Frontiers Inf Technol Electronic Eng 18, 1883–1891 (2017). https://doi.org/10.1631/FITEE.1601193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601193

Key words

CLC number