Skip to main content
Log in

Modeling of a dynamic dual-input dual-output fast steeringmirror system

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A modeling method is proposed for a dynamic fast steering mirror (FSM) system with dual inputs and dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and coupling between the inputs and outputs of the FSM system. The physical model is then represented in a state-space form. Unknown parameters in the state-space model are identified by the subspace identification algorithm, based on the measured input-output data of the FSM system. The accuracy of the state-space model is evaluated by comparing the model estimates with measurements. The variance-accounted-for value of the state-space model is better than 97%, not only for the modeling data but also for the validation data set, indicating high accuracy of the model. Comparison is also made between the proposed dynamic model and the conventional static model, where improvement in model accuracy is clearly observed. The model identified by the proposed method can be used for optimal controller design for closed-loop FSM systems. The modeling method is also applicable to FSM systems with similar structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvi, B.A., Asif, M., Siddiqui, F.A., et al., 2014. Fast steering mirror control using embedded self-learning fuzzy controller for free space optical communication. Wirel. Pers. Commun., 76(3): 643–656. https://doi.org/10.1007/s11277-014-1731-1

    Article  Google Scholar 

  • Arancibia, N.O.P., Chen, N., Gibson, S., et al., 2006. Adaptive control of a MEMS steering mirror for suppression of laser beam jitter. Proc. American Control Conf., Article 104206. https://doi.org/10.1109/ACC.2005.1470530

    Google Scholar 

  • Cao, Z.L., Mu, Q.Q., Hu, L.F., et al., 2009. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope. Opt. Expr., 17(4): 2530–2537. https://doi.org/10.1364/OE.17.002530

    Article  Google Scholar 

  • Cao, Z.L., Mu, Q.Q., Hu, L.F., et al., 2012. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system. Opt. Expr., 20(17): 19331–19342. https://doi.org/10.1364/OE.20.019331

    Article  Google Scholar 

  • Chiuso, A., Muradore, R., Marchetti, E., 2010. Dynamic calibration of adaptive optics systems: a system identification approach. IEEE Trans. Contr. Syst. Technol., 18(3): 705–713. https://doi.org/10.1109/TCST.2009.2023914

    Article  Google Scholar 

  • Hei, M., Zhang, L.C., Zhou, Q.K., et al., 2015. Model-based design method of two-axis four-actuator fast steering mirror system. J. Centr. South Univ., 22(1): 150–158. https://doi.org/10.1007/s11771-015-2505-y

    Article  Google Scholar 

  • Hinnen, K., Verhaegen, M., Doelman, N., 2008. A datadriven H 2-optimal control approach for adaptive optics. IEEE Trans. Contr. Syst. Technol., 16(3): 381–395. https://doi.org/10.1109/TCST.2007.903374

    Article  Google Scholar 

  • Jansson, M., Wahlberg, B., 1996. A linear regression approach to state-space subspace system identification. Signal Process., 52(2): 103–129. https://doi.org/10.1016/0165-1684(96)00048-5

    Article  Google Scholar 

  • Lu, Y.F., Fan, D.P., Zhang, Z.Y., 2013. Theoretical and experimental determination of bandwidth for a twoaxis fast steering mirror. Opt. Int. J. Light Electron Opt., 124(16): 2443–2449. https://doi.org/10.1016/j.ijleo.2012.08.023

    Article  Google Scholar 

  • Mu, Q.Q., Cao, Z.L., Li, C., et al., 2008. Accommodationbased liquid crystal adaptive optics system for large ocular aberration correction. Opt. Lett., 33(24): 2898–2900. https://doi.org/10.1364/OL.33.002898

    Article  Google Scholar 

  • Portillo, A.A., Ortiz, G.G., Racho, C., 2001. Fine pointing control for optical communications. Proc. IEEE Aerospace Conf., 1541–1550. https://doi.org/10.1109/AERO.2001.931385

    Google Scholar 

  • Raj, A.A.B., Selvi, J.A.V., Kumar, D., et al., 2015. Design of cognitive decision making controller for autonomous online adaptive beam steering in free space optical communication system. Wirel. Pers. Commun., 84(1): 765–799. https://doi.org/10.1007/s11277-015-2660-3

    Article  Google Scholar 

  • Song, H., Fraanje, R., Schitter, G., et al., 2011. Controller design for a high-sampling-rate closed-loop adaptive optics system with Piezo-driven deformable mirror. Eur. J. Contr., 17(3): 290–301. https://doi.org/10.3166/ejc.17.290-301

    Article  MathSciNet  Google Scholar 

  • Tang, T., Ma, J.G., Ge, R., 2011. PID-I controller of charge coupled device-based tracking loop for fast-steering mirror. Opt. Eng., 50(4): 043002. https://doi.org/10.1117/1.3567059

    Article  Google Scholar 

  • Verhaegen, M., Verdult, V., 2007. Filtering and System Identification: a Least Squares Approach. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Verhaegen, M., Verdult, V., Bergboer, N., 2007. Filtering and System Identification: an Introduction to Using Matlab Software. Delft University of Technology, the Netherlands.

    Book  Google Scholar 

  • Wang, G., Rao, C.H., 2015. Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater. Struct., 24(3): 035019. https://doi.org/10.1088/0964-1726/24/3/035019

    Article  Google Scholar 

  • Yu, Z.L., Cui, N., Chen, X.L., et al., 2015. H control for fast steering mirror based on the incremental PI controller. Proc. Conf. of the Photoelectronic Technology Committee of the Chinese Society of Astronautics, Article 95210G. https://doi.org/10.1117/12.2087306

    Google Scholar 

Download references

Acknowledgements

We would like to express sincere gratitude to Dr. M. VERHAEGEN from Delft University of Technology for supporting the toolbox for subspace identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11304278) and the National High-Tech R&D Program (863) of China (No. 2014AA093400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Zhang, Jh., Yang, P. et al. Modeling of a dynamic dual-input dual-output fast steeringmirror system. Frontiers Inf Technol Electronic Eng 18, 1488–1498 (2017). https://doi.org/10.1631/FITEE.1601221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601221

Keywords

CLC number

Navigation