Skip to main content
Log in

An efficient lossy link localization approach for wireless sensor networks

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Network fault management is crucial for a wireless sensor network (WSN) to maintain a normal running state because faults (e.g., link failures) often occur. The existing lossy link localization (LLL) approach usually infers the most probable failed link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hy-pothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the issue, we propose the conditional information entropy based redundancy elimination (CIERE), a redundant lossy link elimination approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nonde-terministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effec-tiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M.L., Ho, P.H., Tapolcai, J., et al., 2014. Multi-link failure localization via monitoring bursts. J. Optim. Commun. Netw., 6(11):952–964. http://dx.doi.org/10.1364/JOCN.6.000952

    Article  Google Scholar 

  • Assaf, A.E., Zaidi, S., Affes, S., et al., 2015. Low-cost local-ization for multihop heterogeneous wireless sensor net-works. IEEE Trans. Wirel. Commun., 15(1):472–484. http://dx.doi.org/10.1109/TWC.2015.2475255

    Article  Google Scholar 

  • Benhamida, F.Z., Challal, Y., Koudil, M., 2014. Adaptive failure detection in low power lossy wireless sensor networks. J. Netw. Comput. Appl., 45(4):168–180. http://dx.doi.org/10.1016/j.jnca.2014.07.028

    Article  Google Scholar 

  • Benveniste, A., Fabre, E., Haar, S., et al., 2003. Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Trans. Autom. Contr., 48(9):714–727. http://dx.doi.org/10.1109/TAC.2003.811249

    Article  MathSciNet  Google Scholar 

  • Bossuyt, D.L.V., O’Halloran, B., Papakonstantiou, N., 2016. Cable routing modeling in early system design to prevent cable failure propagation events. IEEE Annual Reliability and Maintainability Symp., p.1–6. http://dx.doi.org/10.1109/RAMS.2016.7448006

    Google Scholar 

  • Chipara, O., Hackmann, G., Lu, C., 2010a. Practical modeling and prediction of radio coverage of indoor sensor net-works. Proc. 9th Int. Conf. on Information Processing in Sensor Networks, p.339–349. http://dx.doi.org/10.1145/1791212.1791252

    Google Scholar 

  • Chipara, O., Lu, C., Bailey, T.C., 2010b. Reliable clinical monitoring using wireless sensor networks: experiences in a step-down hospital unit. Proc. 8th Int. Conf. on Em-bedded Networked Sensor Systems, p.155–168. http://dx.doi.org/10.1145/1869983.1869999

    Google Scholar 

  • Choi, G.S., Park, I.K., 2014. Uncertainty improvement of incomplete decision system using Bayesian conditional information entropy. J. Inst. Int. Broadc. Commun., 14(6):47–54 (in Korean). http://dx.doi.org/10.7236/JIIBC.2014.14.6.47

    Google Scholar 

  • Collotta, M., Bello, L.L., Pau, G., 2015. A novel approach for dynamic traffic lights management based on wireless sensor networks and multiple fuzzy logic controllers. Expert Syst. Appl., 42(13):5403–5415. http://dx.doi.org/10.1016/j.eswa.2015.02.011

    Article  Google Scholar 

  • Couillet, R., Hachem, W., 2011. Local failure localization in large sensor networks. 45th Asilomar Conf. on Signals, Systems and Computers, p.1970–1974. http://dx.doi.org/10.1109/ACSSC.2011.6190369

    Google Scholar 

  • Dias, A., Campos, P., Garrido, P., 2015. An agent based propagation model of bank failures. Lect. Notes Econ. Math. Syst., 676:119–130. http://dx.doi.org/10.1007/978-3-319-09578-3_10

    Article  Google Scholar 

  • Fang, W.W., Chen, J.M., Shu, L., et al., 2010. Congestion avoidance, detection and alleviation in wireless sensor networks. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(1):63–73. http://dx.doi.org/10.1631/jzus.C0910204

    Article  Google Scholar 

  • Gong, W., Liu, K., Liu, Y., 2015. Directional diagnosis for wireless sensor networks. IEEE Trans. Parall. Distr. Syst., 26(5):1290–1300. http://dx.doi.org/10.1109/TPDS.2014.2308173

    Article  Google Scholar 

  • Gupta, V., Tovar, E., Lakshmanan, K., et al., 2012. Inter-application redundancy elimination in wireless sensor networks with compiler-assisted scheduling. 7th IEEE Int. Symp. on Industrial Embedded Systems, p.112–119. http://dx.doi.org/10.1109/SIES.2012.6356576

    Chapter  Google Scholar 

  • Haddad, A., Doumith, E.A., Gagnaire, M., 2013. A fast and accurate meta-heuristic for failure localization based on the monitoring trail concept. Telecommun. Syst., 52(2):813–824. http://dx.doi.org/10.1007/s11235-011-9579-0

    Google Scholar 

  • Harris, P., Philip, R., Robinson, S., et al., 2016. Monitoring anthropogenic ocean sound from shipping using an acoustic sensor network and a compressive sensing ap-proach. Sensors, 16(3):415. http://dx.doi.org/10.3390/s16030415

    Article  Google Scholar 

  • He, W., Wu, B., Ho, P.H., et al., 2011. Monitoring trail allo-cation for SRLG failure localization. IEEE Global Tele-communications Conf., p.1–5. http://dx.doi.org/10.1109/GLOCOM.2011.6133707

    Google Scholar 

  • Kim, W., Park, G., Pack, S., et al., 2014. Lightweight traffic redundancy elimination in software-defined wireless mesh networks. 3rd IEEE Global Conf. on Consumer Electronics, p.723–724. http://dx.doi.org/10.1109/GCCE.2014.7031262

    Google Scholar 

  • Li, M., 2007. Underground structure monitoring with wireless sensor networks. 6th Int. Symp. on Information Pro-cessing in Sensor Networks, p.69–78. http://dx.doi.org/10.1109/IPSN.2007.4379666

    Google Scholar 

  • Li, Y., Shi, H., Zhang, S., 2010. An optimized scheme for battlefield target tracking in wireless sensor network. 2nd Int. Conf. on Industrial and Information Systems, p.356–359. http://dx.doi.org/10.1109/INDUSIS.2010.5565835

    Google Scholar 

  • Liu, K., Ma, Q., Gong, W., 2014. Self-diagnosis for detecting system failures in large-scale wireless sensor networks. IEEE Trans. Wirel. Commun., 13(10):5535–5545. http://dx.doi.org/10.1109/TWC.2014.2336653

    Article  Google Scholar 

  • Ma, W., Zhang, J., 2014. Algorithm based on heuristic strategy to infer lossy links in wireless sensor networks. Algo-rithms, 7(3):397–404. http://dx.doi.org/10.3390/a7030397

    Google Scholar 

  • Mahadevan, N., Abdelwahed, S., Dubey, A., et al., 2010. Distributed diagnosis of complex systems using timed failure propagation graph models. IEEE AU-TOTESTCON, p.1–6. http://dx.doi.org/10.1109/AUTEST.2010.5613575

    Google Scholar 

  • Manolov, R., Guilera, G., Sierra, V., 2004. An analysis of a large scale habitat monitoring application. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.214–226. http://dx.doi.org/10.1145/1031495.1031521

    Google Scholar 

  • Manzano, M., Calle, E., Ripoll, J., et al., 2013. Epidemic survivability: characterizing networks under epidemic-like failure propagation scenarios. 9th Int. Conf. on the Design of Reliable Communication Networks, p.95–102.

    Google Scholar 

  • Miao, X., Liu, K., He, Y., 2011. Agnostic diagnosis: discov-ering silent failures in wireless sensor networks. IEEE Trans. Wirel. Commun., 12(12):6067–6075. http://dx.doi.org/10.1109/TWC.2013.110813.121812

    Article  Google Scholar 

  • Nguyen, H.X., Thiran, P., 2006. Using end-to-end data to infer lossy links in sensor networks. 25th IEEE Int. Conf. on Computer Communication, p.1–12. http://dx.doi.org/10.1109/INFOCOM.2006.271

    Google Scholar 

  • Niu, Q., Xia, S., Tan, G., 2009. A method of fuzzy reasoning based on semantic similarity and bipartite graph matching. IEEE Int. Conf. on Artificial Intelligence and Computa-tional Intelligence, p.141–145. http://dx.doi.org/10.1109/AICI.2009.89

    Google Scholar 

  • Ntalampiras, S., 2014. Fault identification in distributed sensor networks based on universal probabilistic modeling. IEEE Trans. Neur. Netw. Learn. Syst., 26(9):1939–1949. http://dx.doi.org/10.1109/TNNLS.2014.2362015

    Article  MathSciNet  Google Scholar 

  • Nyberg, M., 2013. Failure propagation modeling for safety analysis using causal Bayesian networks. IEEE Conf. on Control and Fault-Tolerant Systems, p.91–97. http://dx.doi.org/10.1109/SysTol.2013.6693936

    Google Scholar 

  • Park, G., Shim, Y., Jang, I., et al., 2016. Bloom-filter-aided redundancy elimination in opportunistic communications. IEEE Wirel. Commun., 23(1):112–119. http://dx.doi.org/10.1109/MWC.2016.7422413

    Article  Google Scholar 

  • Patil, P., Kulkarni, U., 2013. SVM based data redundancy elimination for data aggregation in wireless sensor networks. IEEE Int. Conf. on Advances in Computing, Communications and Informatics, p.1309–1316. http://dx.doi.org/10.1109/ICACCI.2013.6637367

    Google Scholar 

  • Priesterjahn, C., Heinzemann, C., Schafer, W., 2013. From timed automata to timed failure propagation graphs. 16th IEEE Int. Symp. on Object/Component/Service-Oriented Real-Time Distributed Computing, p.1–8. http://dx.doi.org/10.1109/ISORC.2013.6913236

    Chapter  Google Scholar 

  • Rajasegarar, S., Leckie, C., Palaniswami, M., 2008. Anomaly detection in wireless sensor networks. IEEE Wirel. Commun., 15(1):34–40. http://dx.doi.org/10.1109/MWC.2008.4599219

    Article  Google Scholar 

  • Sandhya, M.K., Murugan, K., Devaraj, P., 2015. Selection of aggregator nodes and elimination of false data in wireless sensor networks. Wirel. Netw., 21(4):1327–1341. http://dx.doi.org/10.1007/s11276-014-0859-y

    Article  Google Scholar 

  • Shakeri, M., Pattipati, R., Raghavan, V., 1996. Optimal and near-optimal algorithms for multiple fault diagnosis with unreliable tests. IEEE Trans Syst. Man Cybern. C, 28(3):431–440. http://dx.doi.org/10.1109/5326.704583

    Article  Google Scholar 

  • Shen, D., 2012. Adaptive fault monitoring in all-optical net-works utilizing real-time data traffic. J. Netw. Syst. Manag., 20(1):76–96. http://dx.doi.org/10.1007/s10922-011-9206-0

    Article  Google Scholar 

  • Strasser, S., Sheppard, J., 2011. Diagnostic alarm sequence maturation in timed failure propagation graphs. IEEE AUTOTESTCON, p.158–165. http://dx.doi.org/10.1109/AUTEST.2011.6058741

    Google Scholar 

  • Tang, Y., Al-Shaer, E., Boutaba, R., 2008. Efficient fault diagnosis using incremental alarm correlation and active investigation for Internet and overlay networks. IEEE Trans. Netw. Serv. Manag., 5(5):36–49. http://dx.doi.org/10.1109/TNSM.2008.080104

    Article  Google Scholar 

  • Tang, Y., Cheng, G., Xu, Z., 2009. Community-based fault diagnosis using incremental belief revision. IEEE Int. Conf. on Networking, Architecture and Storage, p.121–128. http://dx.doi.org/10.1109/NAS.2009.24

    Google Scholar 

  • Troiano, L., Cerbo, A.D., Tipaldi, M., et al., 2015. Fault de-tection and resolution based on extended time failure propagation graphs. IEEE Conf. on Soft Computing and Pattern Recognition, p.337–342. http://dx.doi.org/10.1109/SOCPAR.2013.7054155

    Google Scholar 

  • Urbanics, G., Gönczy, L., Urbán, B., et al., 2014. Combined error propagation analysis and runtime event detection in process-driven systems. 6th Int. Workshop on Software Engineering for Resilient Systems, p.169–183. http://dx.doi.org/10.1007/978-3-319-12241-0_13

    Google Scholar 

  • Wang, B., Wei, W., Dinh, H., 2011. Fault localization using passive end-to-end measurements and sequential testing for wireless sensor networks. IEEE Trans. Mob. Comput., 11(3):439–452. http://dx.doi.org/10.1109/TMC.2011.98

    Article  Google Scholar 

  • Wang, R., Wu, Q., Xiong, Y., 2013. Multi-parameters link failure localization algorithm based on compressive sensing. J. Electron. Inform. Technol., 35(11):2596–2601 (in Chinese). http://dx.doi.org/10.3724/SP.J.1146.2013.00265

    Article  Google Scholar 

  • Woo, A., Tong, T., Culler, D., 2003. Taming the underlying challenges of reliable multi-hop routing in sensor net-works. Int. Conf. on Embedded Networked Sensor Sys-tems, p.14–27. http://dx.doi.org/10.1145/958491.958494

    Google Scholar 

  • Wu, C., Wang, J., Zeng, J., 2011. A network traffic awareness architecture for universal redundancy elimination. Int. Conf. on Electronic and Mechanical Engineering and Information Technology, p.52–55. http://dx.doi.org/10.1109/EMEIT.2011.6022836

    Google Scholar 

  • Xie, L., Heegaard, P.E., Jiang, Y., 2013. Modeling and quan-tifying the survivability of telecommunication network systems under fault propagation. International Federation for Information Processing, p.25–36.

    Google Scholar 

  • Xu, Y., Liu, Y., Liu, Y., 2012. Algorithm for redundancy elimination in network traffic. 2nd IEEE Int. Conf. on Consumer Electronics, Communications and Networks, p.1613–1617. http://dx.doi.org/10.1109/CECNet.2012.6201599

    Google Scholar 

  • Yamamoto, S., Nakao, A., 2012. P2P packet cache router for network-wide traffic redundancy elimination. IEEE Int. Conf. on Computing, Networking and Communications, p.830–834. http://dx.doi.org/10.1109/ICCNC.2012.6167541

    Google Scholar 

  • Yang, C., Shi, H., Xue, G., et al., 2014. Network redundancy elimination by dynamic buffer allocation. IEEE 17th Int. Conf. on Computational Science and Engineering, p.1109–1114. http://dx.doi.org/10.1109/CSE.2014.218

    Google Scholar 

  • Yang, Y., An, Z., Xu, Y., et al., 2010. Passive loss inference in wireless sensor networks using EM algorithm. Wirel. Sens. Netw., 2(7):512–519.

    Article  Google Scholar 

  • Zhang, C., Liao, J., Zhu, X., 2010. Heuristic fault localization algorithm based on Bayesian suspected degree. J. Softw., 21(10):2610–2621 (in Chinese).

    Google Scholar 

  • Zhang, L., Wang, W., Gao, J., 2014. Lossy links diagnosis for wireless sensor networks by utilizing the existing traffic information. Int. J. Embed. Syst., 6(2):140–147. http://dx.doi.org/10.1504/IJES.2014.063811

    Article  Google Scholar 

  • Zhang, N., Yang, X., Zhang, M., et al., 2016. RMI-DRE: a redundancy-maximizing identification scheme for data redundancy elimination. Sci. China Inform. Sci., 59:089301. http://dx.doi.org/10.1007/s11432-016-5523-y

    Article  Google Scholar 

  • Zhang, Y., Ansari, N., 2014. On protocol-independent data redundancy elimination. IEEE Commun. Surv. Tutor., 16(1):455–472. http://dx.doi.org/10.1109/SURV.2013.052213.00186

    Article  Google Scholar 

  • Zhao, Z., Cai, W., 2010. Passive localizing lossy links in sensor network using max-product algorithm. 3rd IEEE Int. Conf. on Computer Science and Information Technology, p.571–575. http://dx.doi.org/10.1109/ICCSIT.2010.5563652

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-yan Cui.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61401409 and 51577191)

ORCID: Wen-yan CUI, http://orcid.org/0000-0003-3697-5689

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Wy., Meng, Xr., Yang, Bf. et al. An efficient lossy link localization approach for wireless sensor networks. Frontiers Inf Technol Electronic Eng 18, 689–707 (2017). https://doi.org/10.1631/FITEE.1601247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601247

Key words

CLC number

Navigation