Skip to main content
Log in

Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Precise fault diagnosis is an important part of prognostics and health management. It can avoid accidents, extend the service life of the machine, and also reduce maintenance costs. For gas turbine engine fault diagnosis, we cannot install too many sensors in the engine because the operating environment of the engine is harsh and the sensors will not work in high temperature, at high rotation speed, or under high pressure. Thus, there is not enough sensory data from the working engine to diagnose potential failures using existing approaches. In this paper, we consider the problem of engine fault diagnosis using finite sensory data under complicated circumstances, and propose deep belief networks based on information entropy, IE-DBNs, for engine fault diagnosis. We first introduce several information entropies and propose joint complexity entropy based on single signal entropy. Second, the deep belief networks (DBNs) is analyzed and a logistic regression layer is added to the output of the DBNs. Then, information entropy is used in fault diagnosis and as the input for the DBNs. Comparison between the proposed IE-DBNs method and state-of-the-art machine learning approaches shows that the IE-DBNs method achieves higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguiar, V., Guedes, I., 2015. Shannon entropy, Fisher infor-mation and uncertainty relations for log-periodic oscil-lators. Phys. A, 423:72–79. http://dx.doi.org/10.1016/j.physa.2014.12.031

    Article  MathSciNet  Google Scholar 

  • Bengio, Y., 2009. Learning Deep Architectures for AI. Available from http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

    MATH  Google Scholar 

  • Bengio, Y., 2012. Practical recommendations for gradient-based training of deep architectures. LNCS, 7700:437–478. http://dx.doi.org/10.1007/978-3-642-35289-8_26

    Google Scholar 

  • Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell., 35(8):1798–1828. http://dx.doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  • Bottou, L., 2012. Stochastic gradient descent tricks. LNCS, 7700:421–436. http://dx.doi.org/10.1007/978-3-642-35289-8_25

    Google Scholar 

  • Chen, Y.S., Zhao, X., Jia, X.P., 2015. Spectral-spatial classi-fication of hyperspectral data based on deep belief net-work. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 8(6):2381–2392. http://dx.doi.org/10.1109/JSTARS.2015.2388577

    Article  Google Scholar 

  • Cui, H.X., Zhang, L.B., Kang, R.Y., et al., 2009. Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method. J. Loss Prevent. Process Ind., 22(6):864–867. http://dx.doi.org/10.1016/j.jlp.2009.08.012

    Article  Google Scholar 

  • Dai, J.H., Tian, H.W., 2013. Entropy measures and granularity measures for set-valued information systems. Inform. Sci., 240:72–82. http://dx.doi.org/10.1016/j.ins.2013.03.045

    Article  MathSciNet  Google Scholar 

  • Ferrer, A., 2007. Multivariate statistical process control based on principal component analysis (MSPC-PCA): some re-flections and a case study in an autobody assembly pro-cess. Qual. Eng., 19(4):311–325. http://dx.doi.org/10.1080/08982110701621304

    Article  Google Scholar 

  • Geng, J.B., Huang, S.H., Jin, J.S., et al., 2006. A method of rotating machinery fault diagnosis based on the close degree of information entropy. Int. J. Plant Eng. Manag., 11(3):137–144. http://dx.doi.org/10.13434/j.ckni.1007-4546.2006.03.002

    Google Scholar 

  • Hinton, G.E., 2010. A Practical Guide to Training Restricted Boltzmann Machines. Available from https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

    Google Scholar 

  • Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neur. Comput., 18(7):1527–1554. http://dx.doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  Google Scholar 

  • Hinton, G.E., Deng, L., Yu, D., et al., 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Pro-cess. Mag., 29(6):82–97. http://dx.doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  • Jin, C.X., Li, F.C., Li, Y., 2014. A generalized fuzzy ID3 algorithm using generalized information entropy. Knowl.-Based Syst., 64:13–21. http://dx.doi.org/10.1016/j.knosys.2014.03.014

    Article  Google Scholar 

  • Koverda, V.P., Skokov, V.N., 2012. Maximum entropy in a nonlinear system with a 1/f power spectrum. Phys. A, 391(1–2):21–28. http://dx.doi.org/10.1016/j.physa.2011.07.015

    Article  Google Scholar 

  • Larochelle, H., Bengio, Y., Louradour, J., et al., 2009. Ex-ploring strategies for training deep neural networks. J. Mach. Learn. Res., 10(10):1–40.

    MATH  Google Scholar 

  • Li, F.C., Zhang, Z., Jin, C.X., 2016. Feature selection with partition differentiation entropy for large-scale data sets. Inform. Sci., 329:690–700. http://dx.doi.org/10.1016/j.ins.2015.10.002

    Article  Google Scholar 

  • Li, J., 2015. Recognition of the optical image based on the wavelet space feature spectrum entropy. Optik-Int. J. Light Electron Opt., 126(23):3931–3935. http://dx.doi.org/10.1016/j.ijleo.2015.07.166

    Article  Google Scholar 

  • Liu, Z.G., Hu, Q.L., Cui, Y., et al., 2014. A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy. Neurocomputing, 142:393–407. http://dx.doi.org/10.1016/j.neucom.2014.04.020

    Article  Google Scholar 

  • Martens, J., Sutskever, I., 2012. Training deep and recurrent networks with Hessian-free optimization. LCNS, 7700:479–535. http://dx.doi.org/10.1007/978-3-642-35289-8_27

    Google Scholar 

  • Memisevic, R., Hinton, G.E., 2010. Learning to represent spatial transformations with factored higher-order Boltzmann machine. Neur. Comput., 22(6):1473–1492. http://dx.doi.org/10.1162/neco.2010.01-09-953

    Article  Google Scholar 

  • Mohamed, A.R., Dahl, G.E., Hinton, G.E., 2012. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process., 20(1):14–22. http://dx.doi.org/10.1109/TASL.2011.2109382

    Article  Google Scholar 

  • Nichols, J.M., Seaver, M., Trickey, S.T., 2006. A method for detecting damage-induced nonlinearities in structures using information theory. J. Sound Vibr., 297(1–2):1–16. http://dx.doi.org/10.1016/j.jsv.2006.01.025

    Article  Google Scholar 

  • Niu, J., Bu, X.Z., Li, Z., et al., 2014. An improved bilinear deep belief network algorithm for image classification. 10th Int. Conf. on Computational Intelligence and Secu-rity, p.189–192. http://dx.doi.org/10.1109/CIS.2014.38

    Google Scholar 

  • Nourani, V., Alami, M.T., Vousoughi, F.D., 2015. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J. Hydrol., 524:255–269. http://dx.doi.org/10.1016/j.jhydrol.2015.02.048

    Article  Google Scholar 

  • Ong, B.T., Sugiura, K., Zettsu, K., 2014. Dynamic pre-training of deep recurrent neural networks for predicting envi-ronmental monitoring data. IEEE Int. Conf. on Big Data, p.760–765. http://dx.doi.org/10.1109/BigData.2014.7004302

    Google Scholar 

  • Pan, Y.B., Yang, B.L., Zhou, X.W., 2015. Feedstock molecu-lar reconstruction for secondary reactions of fluid cata-lytic cracking gasoline by maximum information entropy method. Chem. Eng. J., 281:945–952. http://dx.doi.org/10.1016/j.cej.2015.07.037

    Article  Google Scholar 

  • Rastegin, A.E., 2015. On generalized entropies and infor-mation-theoretic Bell inequalities under decoherence. Ann. Phys., 355:241–257. http://dx.doi.org/10.1016/j.aop.2015.02.015

    Article  Google Scholar 

  • Rodríguez, P.H., Alonso, J.B., Ferrer, M.A., et al., 2013. Ap-plication of the Teager-Kaiser energy operator in bearing fault diagnosis. ISA Trans., 52(2):278–284. http://dx.doi.org/10.1016/j.isatra.2012.12.006

    Article  Google Scholar 

  • Saimurugan, M., Ramachandran, K.I., Sugumaran, V., et al., 2011. Multi component fault diagnosis of rotational me-chanical system based on decision tree and support vector machine. Expert Syst. Appl., 38(4):3819–3826. http://dx.doi.org/10.1016/j.eswa.2010.09.042

    Article  Google Scholar 

  • Sainath, T.N., Kingsbury, B., Soltau, H., et al., 2013. Opti-mization techniques to improve training speed of deep neural networks for large speech tasks. IEEE Trans. Au-dio Speech Lang. Process., 21(11):2267–2276. http://dx.doi.org/10.1109/TASL.2013.2284378

    Article  Google Scholar 

  • Sainath, T.N., Kingsbury, B., Saon, G., et al., 2015. Deep convolutional neural networks for large-scale speech tasks. Neur. Networks, 64:39–48. http://dx.doi.org/10.1016/j.neunet.2014.08.005

    Article  Google Scholar 

  • Sekerka, R.F., 2015. Entropy and information theory. In: Thermal Physics: Thermodynamics and Statistical Me-chanics for Scientists and Engineers. Elsevier, p.247–256. http://dx.doi.org/10.1016/B978-0-12-803304-3.00015-6

    Chapter  Google Scholar 

  • Sermanet, P., Chintala, S., LeCun, Y., 2012. Convolutional neural networks applied to house numbers digit classifi-cation. 21st Int. Conf. on Pattern Recognition, p.3288–3291.

    Google Scholar 

  • Song, X.D., Sun, G.H., Dong, S.H., 2015. Shannon infor-mation entropy for an infinite circular well. Phys. Lett. A, 379(22–23):1402–1408. http://dx.doi.org/10.1016/j.physleta.2015.03.020

    Article  MathSciNet  Google Scholar 

  • Su, H.T., You, G.J.Y., 2014. Developing an entropy-based model of spatial information estimation and its applica-tion in the design of precipitation gauge networks. J. Hydrol., 519(D):3316–3327. http://dx.doi.org/10.1016/j.jhydrol.2014.10.022

    Article  Google Scholar 

  • Susan, S., Hanmandlu, M., 2013. A non-extensive entropy feature and its application to texture classification. Neu-rocomputing, 120:214–225. http://dx.doi.org/10.1016/j.neucom.2012.08.059

    Google Scholar 

  • Sutskever, I., Hinton, G.E., Taylor, G.W., 2008. The recurrent temporal restricted Boltzmann machine. Proc. 22nd An-nual Conf. on Neural Information Processing Systems, p.1601–1608.

    Google Scholar 

  • Tamilselvan, P., Wang, P.F., 2013. Failure diagnosis using deep belief learning based health state classification. Re-liab. Eng. Syst. Safety, 115:124–135. http://dx.doi.org/10.1016/j.ress.2013.02.022

    Article  Google Scholar 

  • Tamilselvan, P., Wang, P.F., Youn, B.D., 2011. Multi-sensor health diagnosis using deep belief network based state classification. ASME Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf., p.749–758. http://dx.doi.org/10.1115/DETC2011-48352

    Google Scholar 

  • Tran, V.T., AlThobiani, F., Ball, A., 2014. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl., 41(9):4113–4122. http://dx.doi.org/10.1016/j.eswa.2013.12.026

    Article  Google Scholar 

  • Xie, Y., Zhang, T., 2005. A fault diagnosis approach using SVM with data dimension reduction by PCA and LDA method. Chinese Automation Congress, p.869–874. http://dx.doi.org/10.1109/CAC.2015.7382620

    Google Scholar 

  • Zhang, W.L., Li, R.J., Deng, H.T., et al., 2015. Deep convo-lutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108:214–224. http://dx.doi.org/10.1016/j.neuroimage.2014.12.061

    Article  Google Scholar 

  • Zhao, X.Z., Ye, B.Y., 2016. Singular value decomposition packet and its application to extraction of weak fault feature. Mech. Syst. Signal Process., 70-71:73–86. http://dx.doi.org/10.1016/j.ymssp.2015.08.033

    Article  Google Scholar 

  • Zhou, S.S., Chen, Q.C., Wang, X.L., 2014. Deep adaptive networks for visual data classification. J. Multim., 9(10):1142–1151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-long Feng.

Additional information

ORCID: De-long FENG, http://orcid.org/0000-0002-6274-0720

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Dl., Xiao, Mq., Liu, Yx. et al. Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks. Frontiers Inf Technol Electronic Eng 17, 1287–1304 (2016). https://doi.org/10.1631/FITEE.1601365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601365

Key words

CLC number

Navigation