Skip to main content
Log in

Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University of California-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao, S.C., Zhang, F., 2014. Review of battle damage assessment. Mil. Econ. Res., (8):53–56 (in Chinese).

    Google Scholar 

  • Chen, X., Li, L., Liu, D., 2011. Battle damage level prediction on fuzzy theory and Bayesian method. IEEE Conf. on Robotics, Automation and Mechatronics, p.295–298. https://doi.org/10.1109/RAMECH.2011.6070499

    Google Scholar 

  • Ding, Y., Li, N., Zhao, Y., et al., 2016. Image quality assessment method based on nonlinear feature extraction in kernel space. Front. Inform. Technol. Electron. Eng., 17(10):1008–1017. https://doi.org/10.1631/FITEE.1500439

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning (2nd Ed.). Springer, New York, USA. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  • Hosmer, D.W., Lemeshow, S., 2005. Applied Logistic Regression (2nd Ed.). John Wiley & Sons, New York, USA. https://doi.org/10.1002/0471722146

    MATH  Google Scholar 

  • Hubel, D.H., Wiesel, T.N., 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 160(1):106–154.

    Article  Google Scholar 

  • Jensen, F.V., Nielsen, T.D., 2007. Bayesian Networks and Decision Graphs. Springer, New York, USA. https://doi.org/10.1007/978-0-387-68282-2

    Book  Google Scholar 

  • Jiang, N., Rong, W.G., Peng, B.L., et al., 2015. An empirical analysis of different sparse penalties for autoencoder in unsupervised feature learning. Int. Joint Conf. on Neural Networks, p.1–8. https://doi.org/10.1109/IJCNN.2015.7280568

    Google Scholar 

  • Li, C.H., Huang, J., 2014. The application of Bayesian network in battle damage assessment. IEEE Int. Conf. on Software Engineering and Service Science, p.529–532. https://doi.org/10.1109/ICSESS.2014.6933622

    Google Scholar 

  • Ma, X.M., Ding, P., Yan, W.D., 2016. Warship-damage assessment based on Bayesian networks. Ordnance Ind. Autom., 35(6):72–75 (in Chinese). https://doi.org/10.7690/bgzdh.2016.06.017

    Google Scholar 

  • Ma, Z.J., Shi, Q., Li, B., 2007. Battle damage assessment based on Bayesian network. 8th ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, p.388–391. https://doi.org/10.1109/SNPD.2007.421

    Google Scholar 

  • Qin, F.W., Li, L.Y., Gao, S.M., et al., 2014. A deep learning approach to the classification of 3D CAD models. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2):91–106. https://doi.org/10.1631/jzus.C1300185

    Article  Google Scholar 

  • Rifai, S., Vincent, P., Muller, X., et al., 2011. Contractive auto-encoders: explicit invariance during feature extraction. 28th Int. Conf. on Machine Learning, p.833–840.

    Google Scholar 

  • Seber, G.A.F., Lee, A.J., 2012. Linear Regression Analysis (2nd Ed.). John Wiley & Sons, New York, USA. https://doi.org/10.1002/9780471722199

    MATH  Google Scholar 

  • Song, G.H., Jin, X.G., Chen, G.L., et al., 2016. Two-level hierarchical feature learning for image classification. Front. Inform. Technol. Electron. Eng., 17(9):897–906. https://doi.org/10.1631/FITEE.1500346

    Article  Google Scholar 

  • Sun, G.L., Li, J., 2016. Battle damage assessment based on attribute weighted Bayesian classification. Ship Electron. Eng., 36(1):29–32 (in Chinese). https://doi.org/10.3969/j.issn.1672-9730.2016.01.009

    MathSciNet  Google Scholar 

  • Vens, C., Struyf, J., Schietgat, L., et al., 2008. Decision trees for hierarchical multi-label classification. Mach. Learn., 73:185–214. https://doi.org/10.1007/s10994-008-5077-3

    Article  Google Scholar 

  • Vincent, P., Larochelle, H., Lajoie, I., et al., 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11(12):3371–3408.

    MathSciNet  MATH  Google Scholar 

  • Wen, M.F., Hu, C., Liu, W.R., 2016. Heterogeneous multimodal object recognition method based on deep learning. J. Cent. South Univ. (Sci. Technol.), 47(5):1580–1586 (in Chinese). https://doi.org/10.11817/j.issn.1672-7207.2016.05.018

    Google Scholar 

  • Yong, L.Y., 2004. Modeling in Battle Damage Based on Multi-agent. MS Thesis, Harbin University of Science and Technology, Harbin, China (in Chinese).

    Google Scholar 

  • Zhang, C., Shi, Q., Liu, T.L., et al., 2012. Study on battle damage level prediction using hybrid-learning algorithm. 4th Int. Conf. on Computational and Information Sciences, p.65–68. https://doi.org/10.1109/ICCIS.2012.298

    Google Scholar 

  • Zhao, Z.Y., Li, Y.X., Yu, F., et al., 2015. Improved deep learning algorithm based on extreme learning machine. Comput. Eng. Des., 36(4):1022–1026 (in Chinese). https://doi.org/10.16208/j.issn1000-7024.2015.04.036

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Li.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 61331903) and the National Natural Science Foundation of China (Nos. 61175008 and 61673265)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Zf., Liu, Qq., Wang, J. et al. Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder. Frontiers Inf Technol Electronic Eng 18, 1991–2000 (2017). https://doi.org/10.1631/FITEE.1601395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601395

Key words

CLC number