Skip to main content
Log in

A forwarding graph embedding algorithm exploiting regional topology information

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network functions dynamically and efficiently. Allocating physical resources to the virtual network function forwarding graph is a critical issue in NFV. We formulate the forwarding graph embedding (FGE) problem as a binary integer programming problem, which aims to increase the revenue and decrease the cost to a service provider (SP) while considering limited network resources and the requirements of virtual functions. We then design a novel regional resource clustering metric to quantify the embedding potential of each substrate node and propose a topology-aware FGE algorithm called ‘regional resource clustering FGE’ (RRC-FGE). After implementing our algorithms in C++, simulation results showed that the total revenue was increased by more than 50 units and the acceptance ratio by more than 15%, and the cost of the service provider was decreased by more than 60 units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellavista, P., Callegati, F., Cerroni, W., et al., 2015. Virtual network function embedding in real cloud environments. Comput. Netw., 93(3): 506–517. https://doi.org/10.1016/j.comnet.2015.09.034

    Article  Google Scholar 

  • Bhatia, S., Motiwala, M., Muhlbauer, W., et al., 2008. Hosting Virtual Networks on Commodity Hardware. Technical Report, No. GT-CS-07-10. Georgia Institute of Tech-nology, PA.

    Google Scholar 

  • Chen, D., Lu, L., Shang, M., et al., 2012. Identifying influen-tial nodes in complex networks. Phys. A., 391(4): 1777–1787. https://doi.org/10.1016/j.physa.2011.09.017

    Article  Google Scholar 

  • Cheng, X., Su, S., Zhang, Z., et al., 2011. Virtual network embedding through topology-aware node ranking. ACM SIGCOMM Comput. Commun. Rev., 41(2): 38–47. https://doi.org/10.1145/1971162.1971168

    Article  Google Scholar 

  • Chowdhury, M., Rahman, M., Boutaba, R., et al., 2009. Vineyard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw., 20(1): 206–219. https://doi.org/10.1109/TNET.2011.2159308

    Article  Google Scholar 

  • Eppstein, D., 1998. Finding the K shortest paths. SIAM J. Comput., 28(2): 652–673. https://doi.org/10.1137/S0097539795290477

    Article  MathSciNet  Google Scholar 

  • ETSI NFVISG (European Telecommunications Standards Institute Network Functions Virtualization Industry Specification Group), 2013. Network Functions Virtual-ization, White Paper. http://www.esti.org/technologiescluster/technologies/nfv [Accessed on Nov. 2, 2016].

    Google Scholar 

  • Fagiolo, G., 2007. Clustering in complex directed networks. Phys. Rev. E, 76(2): 12–23. https://doi.org/10.1103/PhysRevE.76.026107

    Article  MathSciNet  Google Scholar 

  • Fan, J., Ammar, M., 2006. Dynamic topology configuration in service overlay networks: a study of reconfiguration policies. Proc. 25th IEEE Int. Conf. on Computer Com-munications, p.21–32. https://doi.org/10.1109/INFOCOM.2006.139

    Google Scholar 

  • Goldberg, D., 2009. Genetic Algorithms in Search, Optimiza-tion and Machine Learning. Addison-Wesley Profes-sional, USA, p.216–236.

    Google Scholar 

  • Gong, L., Wen, Y., Zhu, Z., et al., 2014. Toward profit-seeking virtual network embedding algorithm via global resource capacity. Proc. IEEE Int. Conf. on Computer Communi-cations, p.1–9. https://doi.org/10.1109/INFOCOM.2014.6847918

    Google Scholar 

  • Koh, Y., Knauerhase, R., Brett, P., et al., 2007. An analysis of performance interference effects in virtual environments. Proc. IEEE Int. Symp. on Performance Analysis of Sys-tems & Software, p.200–209. https://doi.org/10.1109/ISPASS.2007.363750

    Google Scholar 

  • Lischka, J., Karl, H., 2009. A virtual network mapping algo-rithm based on subgraph isomorphism detection. Proc. 1st ACM Workshop on Virtualized Infrastructure Systems and Architectures, p.81–88. https://doi.org/10.1145/1592648.1592662

    Chapter  Google Scholar 

  • Lu, J., Turner, J., 2006. Efficient Mapping of Virtual Networks onto a Shared Substrate. Technical Report No. WUCSE- 2006-35, Washington University in St Louis, Washington.

    Google Scholar 

  • Mehraghdam, S., Keller, M., Karl, H., et al., 2014. Specifying and placing chains of virtual network functions. Proc. 3rd IEEE Int. Conf. on Cloud Networking, p.7–13. https://doi.org/10.1109/CloudNet.2014.6968961

    Google Scholar 

  • Mei, Y., Liu, L., Pu, X., et al., 2013. Performance analysis of network I/O workloads in virtualized data centers. IEEE Trans. Serv. Comput., 6(1): 48–63. https://doi.org/10.1109/TSC.2011.36

    Article  Google Scholar 

  • Pu, X., Liu, L., Mei, Y., et al., 2010. Understanding perfor-mance interference of I/O workload in virtualized cloud environment. Proc. 3rd IEEE Int. Conf. on Cloud Com-puting, p.51–58. https://doi.org/10.1109/CLOUD.2010.65

    Google Scholar 

  • Razzaq, A., Siraj Rathore, M., 2010. An approach towards resource efficient virtual network embedding. Proc. 2nd Int. Conf. on Evolving Internet, p.68–73. https://doi.org/10.1109/INTERNET.2010.21

    Google Scholar 

  • Shea, R., Wang, F., Wang, H., et al., 2014. A deep investiga-tion into network performance in virtual machine based cloud environments. Proc. IEEE Int. Conf. on Computer Communications, p.1285–1293. https://doi.org/10.1109/INFOCOM.2014.6848061

    Google Scholar 

  • Su, S., Zhang, Z., Cheng, X., et al., 2012. Energy-aware virtual network embedding through consolidation. Proc. IEEE Int. Conf. on Computer Communications Workshops, p.127–132. https://doi.org/10.1109/INFCOMW.2012.6193473

    Google Scholar 

  • Wang, Z., Wu, J., Wang, Y., et al., 2014. Survivable virtual network mapping using optimal backup topology in vir-tualized SDN. China Commun., 11(2): 26–37. https://doi.org/10.1109/CC.2014.6821735

    Article  Google Scholar 

  • Xia, S., Zhang, Y., Green, H., et al., 2014. Network function placement for NFV chaining in packet/optical data cen-ters. Proc. European Conf. on Optical Communication, p.1–3. https://doi.org/10.1109/ECOC.2014.6963925

    Google Scholar 

  • Yu, M., Yi, Y., Rexford, J., et al., 2008. Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev., 32(2): 17–29. https://doi.org/10.1145/1355734.1355737

    Article  Google Scholar 

  • Zhang, S., Qian, Z., Wu, J., et al., 2012. An opportunistic resource sharing and topology-aware mapping framework for virtual networks. Proc. IEEE Int. Conf. on Computer Communications, p.2408–2416. https://doi.org/10.1109/INFCOM.2012.6195630

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-chao Hu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61309020 and 61521003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Hc., Zhang, F., Mao, Yx. et al. A forwarding graph embedding algorithm exploiting regional topology information. Frontiers Inf Technol Electronic Eng 18, 1854–1866 (2017). https://doi.org/10.1631/FITEE.1601404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601404

Key words

CLC number

Navigation