Skip to main content

Advertisement

Log in

Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review

  • Review
  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The operational environment of today’s smart grids is becoming more complicated than ever before. A number of factors, including renewable penetration, marketization, cyber security, and hazards of nature, bring challenges and even threats to control centers. New techniques are anticipated to help dispatchers become aware of the accurate situations as they manipulate and navigate the situations as quickly as possible. To address the issues, we first introduce the background for this topic as well as the emerging technical demands of situational awareness in the dispatcher’s environment. The general concepts and technical requirements of situational awareness are then summarized, aimed at offering an overview for readers to understand the state-of-the-art progress in this area. In addition, we discuss the importance of integrating the architecture of support tools in accordance with the dispatcher’s thought process, which in fact guides correct and swift reactions in real-time operations. Finally, the prospects for situational awareness architecture are investigated with the goal of presenting situational awareness modules in an advanced and visualized manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albano, M., Ferreira, L.L., Pinho, L.M., 2015. Convergence of smart grid ICT architectures for the last mile. IEEE Trans. Ind. Inform., 11(1):187–197. http://dx.doi.org/10.1109/TII.2014.2379436

    Article  Google Scholar 

  • Bera, S., Misra, S., Rodrigues, J.J.P.C., 2015. Cloud computing applications for smart grid: a survey. IEEE Trans. Parall. Distr. Syst., 26(5):1477–1494. http://dx.doi.org/10.1109/TPDS.2014.2321378

    Article  Google Scholar 

  • Britton, J., Brown, P., Moseley, J., et al., 2016. Optimizing operations with CIM: today’s grid relies on network analysis (and a lot of data). IEEE Power Energy Mag., 14(1):48–57. http://dx.doi.org/10.1109/MPE.2015.2481783

    Article  Google Scholar 

  • Chen, Q.Q., Yin, X.G., You, D.H., et al., 2009. Review on blackout process in China southern area main power grid in 2008 snow disaster. IEEE Power & Energy Society General Meeting, p.1–8. http://dx.doi.org/10.1109/PES.2009.5275700

    Google Scholar 

  • Chompoobutrgool, Y., Vanfretti, L., 2013. Identification of power system dominant inter-area oscillation paths. IEEE Trans. Power Syst., 28(3):2798–2807. http://dx.doi.org/10.1109/TPWRS.2012.2227840

    Article  Google Scholar 

  • Dahal, N., Abuomar, O., King, R., et al., 2015. Event stream processing for improved situational awareness in the smart grid. Expert Syst. Appl., 42(20):6853–6863. http://dx.doi.org/10.1016/j.eswa.2015.05.003

    Article  Google Scholar 

  • Deese, A.S., Nwankpa, C.O., 2014. Development of custom FPAA hardware for faster-than real-time analysis of power system dynamics. IEEE PES General Meeting | Confe. & Exposition, p.1–5. http://dx.doi.org/10.1109/PESGM.2014.6939094

    Google Scholar 

  • de la Ree, J., Liu, Y.L., Mili, L., et al., 2005. Catastrophic failures in power systems: causes, analyses, and countermeasures. Proc. IEEE, 93(5):956–964. http://dx.doi.org/10.1109/JPROC.2005.847246

    Article  Google Scholar 

  • Dutta, S., Overbye, T.J., 2014. Feature extraction and visualization of power system transient stability results. IEEE Trans. Power Syst., 29(2):966–973. http://dx.doi.org/10.1109/TPWRS.2013.2283276

    Article  Google Scholar 

  • Endsley, M.R., 1995. Towards a theory of situation awareness in dynamic systems. Human Factors, 37(1):32–64. http://dx.doi.org/10.1518/001872095779049543

    Article  Google Scholar 

  • Evangelopoulos, V.A., Georgilakis, P.S., 2014. Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm. IET. Gener. Transm. Distr., 8(3):389–400. http://dx.doi.org/10.1049/iet-gtd.2013.0442

    Google Scholar 

  • Giri, J., 2015. Proactive management of the future grid. IEEE Power Energy Technol. Syst. J., 2(2):43–52. http://dx.doi.org/10.1109/JPETS.2015.2408212

    Article  Google Scholar 

  • Giri, J., Parashar, M., Trehern, J., et al., 2012. The situation room: control center analytics for enhanced situational awareness. IEEE Power Energy Mag., 10(5):24–39. http://dx.doi.org/10.1109/MPE.2012.2205316

    Article  Google Scholar 

  • Gungor, V.C., Sahin, D., Kocak, T., et al., 2013. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform., 9(1):28–42. http://dx.doi.org/10.1109/TII.2012.2218253

    Article  Google Scholar 

  • Guo, J.H., Zhang, Y., Young, M.A., et al., 2015. Design and implementation of a real-time off-grid operation detection tool from a wide-area measurements perspective. IEEE Trans. Power Syst., 6(4):2080–2087. http://dx.doi.org/10.1109/TSG.2014.2350913

    Google Scholar 

  • Gutierrez-Martinez, V.J., Canizares, C.A., Fuerte-Esquivel, C.R., et al., 2011. Neural-network security-boundary constrained optimal power flow. IEEE Trans Power Syst., 26(1):63–72. http://dx.doi.org/10.1109/TPWRS.2010.2050344

    Article  Google Scholar 

  • Hauss, Y., Eyferth, K., 2003. Securing future ATM-concepts’ safety by measuring situation awareness in ATC. Aerosp. Sci. Technol., 7(6):417–427. http://dx.doi.org/10.1016/S1270-9638(02)00011-1

    Article  Google Scholar 

  • Holsopple, J., Sudit, M., Nusinov, M., et al., 2010. Enhancing situation awareness via automated situation assessment. IEEE Commun. Mag., 48(3):146–152. http://dx.doi.org/10.1109/MCOM.2010.5434386

    Article  Google Scholar 

  • Huang, Y.H., Zhou, X.X., 2015. Knowledge model for electric power big data based ontology and semantic web. CSEE J. Power Energy Syst., 1(1):19–27. http://dx.doi.org/10.17775/CSEEJPES.2015.00003

    Article  Google Scholar 

  • Kaci, A., Kamwa, I., Dessaint, L.A., et al., 2014. Synchrophasor data baselining and mining for online monitoring of dynamic security limits. IEEE Trans. Power Syst., 29(6):2681–2695. http://dx.doi.org/10.1109/TPWRS.2014.2312418

    Article  Google Scholar 

  • Kalyani, S., Swarup, K.S., 2013. Pattern analysis and classification for security evaluation in power networks. Int. J. Electr. Power Energy Syst., 44(1):547–560. http://dx.doi.org/10.1016/j.ijepes.2012.07.065

    Article  Google Scholar 

  • Kezunovic, M., 2011. Translational knowledge: from collecting data to making decisions in a smart grid. Proc. IEEE, 99(6):977–997. http://dx.doi.org/10.1109/JPROC.2011.2112631

    Article  Google Scholar 

  • Kezunovic, M., Bose, A., 2013. The future EMS design requirements. 46th Hawaii Int. Conf. on System Sciences, p.2354–2363. http://dx.doi.org/10.1109/HICSS.2013.520

    Google Scholar 

  • Kokar, M.M., Endsley, M.R., 2012. Situation awareness and cognitive modeling. IEEE Intell. Syst., 27(3):91–96. http://dx.doi.org/10.1109/MIS.2012.61

    Article  Google Scholar 

  • Kong, X.B., Liu, X.J., Lee, K.Y., 2014. Data-driven modelling of a doubly fed induction generator wind turbine system based on neural networks. IET Renew. Power Gener., 8(8):849–857. http://dx.doi.org/10.1049/iet-rpg.2013.0391

    Article  Google Scholar 

  • Kundur, P., Paserba, J., Ajjarapu, V., et al., 2004. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst., 19(3):1387–1401. http://dx.doi.org/10.1109/TPWRS.2004.825981

    Article  Google Scholar 

  • Liu, Y., Liu, Y., Liu, J., et al., 2016. High-performance predictor for critical unstable generators based on scalable parallelized neural networks. J. Modern Power Syst. Clean Energy, 4(3):414–426. http://dx.doi.org/10.1007/s40565-016-0209-4

    Article  Google Scholar 

  • Lu, N., Du, P.W., Greitzer, F.L., et al., 2012. A multi-layer, data-driven advanced reasoning tool for intelligent data mining and analysis for smart grids. IEEE Power and Energy Society General Meeting, p.1–7. http://dx.doi.org/10.1109/PESGM.2012.6345180

    Google Scholar 

  • Makarov, Y.V., Reshetov, V.I., Stroev, V.A., et al., 2005. Blackouts in North America and Europe: analysis and generalization. IEEE Power Tech, p.1–7. http://dx.doi.org/10.1109/PTC.2005.4524782

    Google Scholar 

  • Makarov, Y.V., Du, P.W., Lu, S., et al., 2012. PMU-based wide-area security assessment: concept, method, and implementation. IEEE Trans. Smart Grid, 3(3):1325–1332. http://dx.doi.org/10.1109/TSG.2012.2193145

    Article  Google Scholar 

  • Matar, M., Iravani, R., 2013. The reconfigurable-hardware real-time and faster-than-real-time simulator for the analysis of electromagnetic transients in power systems. IEEE Trans. Power Del., 28(2):619–627. http://dx.doi.org/10.1109/TPWRD.2012.2229723

    Article  Google Scholar 

  • McDonald, J.D., Rajagopalan, S., Waizenegger, J.R., et al., 2007. Realizing the power of data marts. IEEE Power Energy Mag., 5(3):57–66. http://dx.doi.org/10.1109/MPAE.2007.365821

    Article  Google Scholar 

  • Moray, N., Vincenzi, D.A., Mouloua, M., et al., 2004. Human Performance, Situation Awareness and Automation: Current Research and Trends. LEA, Mahwah.

    Google Scholar 

  • Morison, K., Wang, L., Kundur, P., 2004. Power system security assessment. IEEE Power Energy Mag., 2(5):30–39. http://dx.doi.org/10.1109/MPAE.2004.1338120

    Article  Google Scholar 

  • Moulin, L.S., da Silva, A.P.A., El-Sharkawi, M.A., et al., 2004. Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans. Power Syst., 19(2):818–825. http://dx.doi.org/10.1109/TPWRS.2004.826018

    Article  Google Scholar 

  • Olek, B., Wierzbowski, M., 2015. Local energy balancing and ancillary services in low-voltage networks with distributed generation, energy storage, and active loads. IEEE Trans. Ind. Electron., 62(4):2499–2508. http://dx.doi.org/10.1109/TIE.2014.2377134

    Article  Google Scholar 

  • Ortega-Vazquez, M.A., Bouffard, F., Silva, V., 2013. Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans. Power Syst., 28(2):1806–1815. http://dx.doi.org/10.1109/TPWRS.2012.2221750

    Article  Google Scholar 

  • Panteli, M., Kirschen, D.S., 2015. Situation awareness in power systems: theory, challenges and applications. Electr. Power Syst. Res., 122:140–151. http://dx.doi.org/10.1016/j.epsr.2015.01.008

    Article  Google Scholar 

  • Panteli, M., Crossley, P.A., Kirschen, D.S., et al., 2013. Assessing the impact of insufficient situation awareness on power system operation. IEEE Trans. Power Syst., 28(3):2967–2977. http://dx.doi.org/10.1109/TPWRS.2013.2240705

    Article  Google Scholar 

  • Sarmadi, S.A.N., Dobakhshari, A.S., Azizi, S., et al., 2011. A sectionalizing method in power system restoration based on WAMS. IEEE Trans. Smart Grid, 2(1):190–197. http://dx.doi.org/10.1109/TSG.2011.2105510

    Article  Google Scholar 

  • Schneiders, C., Vanzetta, J., Verstege, J.F., 2012. Enhancement of situation awareness in wide area transmission systems for electricity and visualization of the global system state. Proc. 3rd IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, p.1–9. http://dx.doi.org/10.1109/ISGTEurope.2012.6465665

    Google Scholar 

  • Shafie-khah, M., Catalão, J.P.S., 2015. A stochastic multi-layer agent-based model to study electricity market participants behavior. IEEE Trans. Power Syst., 30(2):867–881. http://dx.doi.org/10.1109/TPWRS.2014.2335992

    Article  Google Scholar 

  • Shahriar Muttalib, A.Z.M., Taylor, G., Bradley, M., 2013. Investigating scalable computational tools and infrastructure to enable interoperable and secure control of large-scale power systems. 48th Int. Universities’ Power Engineering Conf., p.1–6. http://dx.doi.org/10.1109/UPEC.2013.6715043

    Google Scholar 

  • Shetty, R., Fan, J.Y., McDonald J.D., 2012. Improving utility operational excellence through non-operational data management. IEEE PES Innovative Smart Grid Technologies, p.1–6. http://dx.doi.org/10.1109/ISGT.2012.6175623

    Google Scholar 

  • Shi, X.Y., Li, Y., Cao, Y.J., et al., 2015. Cyber-physical electrical energy systems: challenges and issues. CSEE J. Power Energy Syst., 1(2):36–42. http://dx.doi.org/10.17775/CSEEJPES.2015.00017

    Article  Google Scholar 

  • Sodhi, R., Sharieff, M.I., 2015. Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Gener. Transm. Distr., 9(2):172–182. http://dx.doi.org/10.1049/iet-gtd.2014.0215

    Article  Google Scholar 

  • Sule, M.J., Li, M.Z., Taylor, G.A., et al., 2015. Deploying trusted cloud computing for data intensive power system applications. 50th Int. Universities Power Engineering Conf., p.1–5. http://dx.doi.org/10.1109/UPEC.2015.7339864

    Google Scholar 

  • Tesseron, J.M., 2008. Mission: reliability. IEEE Power Energy Mag., 6(1):42–48. http://dx.doi.org/10.1109/MPAE.2008.4412939

    Article  Google Scholar 

  • Tian, F., Zhang, X., Yu, Z.H., et al., 2016. Online decision-making and control of power system stability based on super-real-time simulation. CSEE J. Power Energy Syst., 2(1):95–103. http://dx.doi.org/10.17775/CSEEJPES.2016.00014

    Article  Google Scholar 

  • Ummels, B.C., Gibescu, M., Pelgrum, E., et al., 2007. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Conv., 22(1):44–51. http://dx.doi.org/10.1109/TEC.2006.889616

    Article  Google Scholar 

  • Vellaithurai, C., Srivastava, A., Zonouz, S., et al., 2015. CPIndex: cyber-physical vulnerability assessment for power-grid infrastructures. IEEE Trans. Smart Grid, 6(2):566–575. http://dx.doi.org/10.1109/TSG.2014.2372315

    Article  Google Scholar 

  • Verma, K., Niazi, K.R., 2012. Supervised learning approach to online contingency screening and ranking in power systems. Int. J. Electr. Power Energy Syst., 38(1):97–104. http://dx.doi.org/10.1016/j.ijepes.2011.12.025

    Article  Google Scholar 

  • Vidulich, M., Dominguez, C., Vogel, E., et al., 1994. Situation Awareness: Papers and Annotated Bibliography. Report No. AL/CF-TR-1994-0085. Armstrong Laboratory, Human System Center, CA.

    Book  Google Scholar 

  • Wan, C., Zhao, J., Song, Y.H., et al., 2015. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst., 1(4):38–46. http://dx.doi.org/10.17775/CSEEJPES.2015.00046

    Article  Google Scholar 

  • Wang, W.Y., Barnes, M., Marjanovic, O., et al., 2016. Impact of DC breaker systems on multiterminal VSC-HVDC stability. IEEE Trans Power Del., 31(2):769–779. http://dx.doi.org/10.1109/TPWRD.2015.2409132

    Article  Google Scholar 

  • Wang, Y.X., Wang, Y., 2006. Cognitive informatics models of the brain. IEEE Trans. Syst. Man Cybern. Part C, 36(2):203–207. http://dx.doi.org/10.1109/TSMCC.2006.871151

    Article  Google Scholar 

  • Yin, J., Lampert, A., Cameron, M., et al., 2012. Using social media to enhance emergency situation awareness. IEEE Intell. Syst., 27(6):52–59. http://dx.doi.org/10.1109/MIS.2012.6

    Article  Google Scholar 

  • Zhao, X.Y., Zhou, H.F., Shi, D., et al., 2015. On-line PMU-based transmission line parameter identification. CSEE J. Power Energy Syst., 1(2):68–74. http://dx.doi.org/10.17775/CSEEJPES.2015.00021

    Article  Google Scholar 

  • Zheng, X.S., McConkie, G.W., Tayi, Y., 2004. Dynamic monitoring of traffic flow: the driver’s situation awareness. Proc. 5th Human Performance, Situation Awareness and Automation Conf.

    Google Scholar 

  • Zhu, J., Zhuang, E., Ivanov, C., et al., 2011. A Data-driven approach to interactive visualization of power systems. IEEE Trans. Power Syst., 26(4):2539–2546. http://dx.doi.org/10.1109/TPWRS.2011.2119499

    Article  Google Scholar 

  • ZigBee Alliance, 2013. Smart Energy Profile 2.0 (ZigBee SEP 2.0). Application Protocol Standard.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-bo Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51437003)

ORCID: You-bo LIU, http://orcid.org/0000-0002-5465-5243

Dr. You-bo LIU, corresponding author of this invited review article, received his B.S. and M.S. degrees in electrical engineering from Sichuan University in 2005 and 2008, respectively. He was a visiting researcher of Power System Research Institute of Brunel University, UK, from Oct. 2009 to Oct. 2010, and received Ph.D. degree in power system and automation from School of Electrical Engineering and Information, Sichuan University, 2011. He joined the School of Electrical Engineering and Information, Sichuan University, China in 2011. Currently, he is a lecturer in the same college. He is also affiliated with the Intelligent Electric Power Grid Key Laboratory of Sichuan Province at Sichuan University. His research interests focus on power system security assessment and situation awareness, power system vulnerability, and cascading failures analytics. He is a member of IEEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yb., Liu, Jy., Taylor, G. et al. Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review. Frontiers Inf Technol Electronic Eng 17, 1107–1121 (2016). https://doi.org/10.1631/FITEE.1601516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601516

Key words

CLC number