Skip to main content

Advertisement

Log in

Bifurcation-based fractional-order PIλDμ controller design approach for nonlinear chaotic systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose a novel approach called the robust fractional-order proportional-integral-derivative (FOPID) controller, to stabilize a perturbed nonlinear chaotic system on one of its unstable fixed points. The stability analysis of the nonlinear chaotic system is made based on the proportional-integral-derivative actions using the bifurcation diagram. We extract an initial set of controller parameters, which are subsequently optimized using a quadratic criterion. The integral and derivative fractional orders are also identified by this quadratic criterion. By applying numerical simulations on two nonlinear systems, namely the multi-scroll Chen system and the Genesio-Tesi system, we show that the fractional PIλDμ controller provides the best closed-loop system performance in stabilizing the unstable fixed points, even in the presence of random perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berns D, Moiola J, Chen G, 1998. Feedback control of limit cycle amplitude from a frequency domain approach. Automatica, 34(12):1567–1573. https://doi.org/10.1016/S0005-1098(98)80010-1

    Article  MATH  Google Scholar 

  • Bouafoura M, Braiek N, 2010. PIλDµ controller design for integer and fractional plants using piecewise orthogonal functions. Commun Nonl Sci Numer Simul, 15:1267–1278. https://doi.org/10.1016/j.cnsns.2009.05.047

    Article  MathSciNet  MATH  Google Scholar 

  • Boukabou A, Chebbah A, Belmahboul A, 2007. Stabilizing unstable periodic orbits of the multi-scroll Chua’s attractor. Nonl Anal Model Contr, 12(4):469–477.

    MathSciNet  MATH  Google Scholar 

  • Charef A, Assabaa M, Ladaci S, et al., 2013. Fractional order adaptive controller for stabilized systems via high-gain feedback. IET Contr Theory Appl, 7(6):822–828. https://doi.org/10.1049/iet-cta.2012.0309

    Article  Google Scholar 

  • Chen D, Liu Y, Ma X, et al., 2012. Control of a class of fractional-order chaotic systems via sliding mode. Nonl Dynam, 67:893–901. https://doi.org/10.1007/s11071-011-0002-x

    Article  MathSciNet  MATH  Google Scholar 

  • Chen D, Zhao W, Sprott J, et al., 2013. Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonl Dynam, 73(3):1495–1505. https://doi.org/10.1007/s11071-013-0880-1

    Article  MathSciNet  MATH  Google Scholar 

  • Chen D, Zhang R, Liu X, et al., 2014. Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun Nonl Sci Numer Simul, 19:4105–4121. https://doi.org/10.1016/j.cnsns.2014.05.005

    Article  MathSciNet  Google Scholar 

  • Chen L, Zhao T, Li W, et al., 2016. Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PIλDµ feedback controller. Nonl Dynam, 83(1):529–539. https://doi.org/10.1007/s11071-015-2345-1

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Yuan X, Ji B, et al., 2014. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conv Manag, 84:390–404. https://doi.org/10.1016/j.enconman.2014.04.052

    Article  Google Scholar 

  • Colonius F, Grne L, 2002. Dynamics, Bifurcations, and Control. Springer Science & Business Media, New York, USA.

    Book  Google Scholar 

  • Dadras S, Momeni H, 2009. Control uncertain Genesio-Tesi chaotic system: adaptive sliding mode approach. Chaos Sol Fract, 42:3140–3146. https://doi.org/10.1016/j.chaos.2009.04.018

    Article  Google Scholar 

  • Delavari H, Ghaderi R, Ranjbar N, et al., 2010. Adaptive fractional PID controller for robot manipulator. 4th Int Workshop on Fractional Differentiation and its Applications, p.1–7.

    Google Scholar 

  • Diethlem K, 2003. Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing, 71:305–319. https://doi.org/10.1007/s00607-003-0033-3

    Article  MathSciNet  Google Scholar 

  • Ditto W, 1996. Applications of chaos in biology and medicine. Chaos Chang Nat Sci Med, 376:175–202. https://doi.org/10.1063/1.51060

    Article  Google Scholar 

  • Faieghi MR, Delavari H, 2012. Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun Nonl Sci Numer Simul, 17:731–741. https://doi.org/10.1016/j.cnsns.2011.05.038

    Article  MathSciNet  MATH  Google Scholar 

  • Faieghi MR, Naderi M, Jalali AA, 2011. Design of fractionalorder PID for ship roll motion control using chaos embedded PSO algorithm. 2nd Int Conf on Control, Instrumentation, and Automation, p.606–610. https://doi.org/10.1109/ICCIAutom.2011.6356727

    Chapter  Google Scholar 

  • Fayazi A, Rafsanjani H, 2011. Synchronization in the Genesio-Tesi and Coullet system using a fractional-order adaptive controller. 9th IEEE Int Conf on Control and Automation, p.889–894. https://doi.org/10.1109/ICCA.2011.6137988

    Google Scholar 

  • Genesio R, Tesi A, 1992. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica, 28(3):531–548. https://doi.org/10.1016/0005-1098(92)90177-H

    Article  MATH  Google Scholar 

  • Ghamati M, Balochian S, 2015. Design of adaptive sliding mode control for synchronization Genesio-Tesi chaotic system. Chaos Sol Fract, 75:111–117. https://doi.org/10.1016/j.chaos.2015.02.010

    Article  MathSciNet  MATH  Google Scholar 

  • Gholipour R, Khosravi A, Mojallali H, 2012. Intelligent back stepping control for Genesio-Tesi chaotic system using a chaotic particle swarm optimization algorithm. Int J Comput Electr Eng, 4(5):618–625. https://doi.org/10.7763/IJCEE.2012.v4.570

    Article  Google Scholar 

  • Hadef S, Boukabou A, 2014. Control of multi-scroll Chen system. J Frankl Inst, 351:2728–2741. https://doi.org/10.1016/j.jfranklin.2014.01.015

    Article  MathSciNet  MATH  Google Scholar 

  • Harb A, Abdel-Jabbar N, 2003. Controlling Hopf bifurcation and chaos in a small power system. Chaos Sol Fract, 18:1055–1063. https://doi.org/10.1016/S0960-0779(03)00073-0

    Article  MATH  Google Scholar 

  • Hentenryck P, Bent R, Upfal E, 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley.

    Google Scholar 

  • Hosseinia S, Ghadri R, Ranjbar A, et al., 2010. Control of chaos via fractional order state feedback controller. In: New Trend in Nanotechnology and Fractional Calculus Applications. Springer, Netherlands, p.511–519. https://doi.org/10.1007/978-90-481-3293-5_46

    Chapter  Google Scholar 

  • Ladaci S, Bensafia Y, 2016. Indirect fractional order pole assignment based adaptive control. Int J Eng Sci Technol, 19:518–530. https://doi.org/10.1016/j.jestch.2015.09.004

    Article  Google Scholar 

  • Ladaci S, Charef A, 2006a. An adaptive fractional PIλDµ controller. 6th Int Symp on Tools and Methods of Competitive Engineering, p.1533–1540.

    Google Scholar 

  • Ladaci S, Charef A, 2006b. On fractional adaptive control. Nonl Dynam, 43(4):365–378. https://doi.org/10.1007/s11071-006-0159-x

    Article  MathSciNet  MATH  Google Scholar 

  • Lamba P, Hudson J, 1987. Experiments on bifurcations to chaos in a forced chemical reactor. Chem Eng Sci, 42:1–8. https://doi.org/10.1016/0009-2509(87)80203-8

    Article  Google Scholar 

  • Liu X, Shen X, Zhang H, 2012. Multi-scroll chatic and hyperchaotic attractors generated from Chen system. Int J Bifurc Chaos, 22(2):1250033. https://doi.org/10.1142/S0218127412500332

    Article  MATH  Google Scholar 

  • Liu Y, 2012. Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system. Nonl Dynam, 67:89–96. https://doi.org/10.1007/s11071-011-9960-2

    Article  MATH  Google Scholar 

  • Liu Y, Yang Q, 2010. Dynamics of a new Lorenz-like chaotic system. Nonl Anal Real World Appl, 11(4):2563–2572. https://doi.org/10.1016/j.nonrwa.2009.09.001

    Article  MathSciNet  MATH  Google Scholar 

  • Ma J, Wang C, Tang J, et al., 2009. Suppression of the spiral wave and turbulence in the excitability-modulated media. Int J Theor Phys, 48:150–157. https://doi.org/10.1007/s10773-008-9790-2

    Article  Google Scholar 

  • Machado J, 1997. Analysis and design of fractional-order digital control systems. J Syst Anal Model Simul, 27(2-3):107–122.

    MATH  Google Scholar 

  • Machado J, Galhano A, 2009. Approximating fractional derivatives in the perspective of system control. Nonl Dynam, 56:401–407. https://doi.org/10.1007/s11071-008-9409-4

    Article  MATH  Google Scholar 

  • Neçaibia A, Ladaci S, 2014. Self-tuning fractional order PIλDµ controller based on extremum seeking approach. Int J Autom Contr, 8(2):99–121. https://doi.org/10.1504/IJAAC.2014.063361

    Article  Google Scholar 

  • Oustaloup A, Mathieu B, 1991. La commande CRONE (in French). HERMES Science Publ., Paris.

    MATH  Google Scholar 

  • Pan I, Das S, 2012. Chaotic multi-objective optimization based design of fractional order PIkDl controller in AVR system. Electr Power Energy Syst, 43:393–407. https://doi.org/10.1016/j.ijepes.2012.06.034

    Article  Google Scholar 

  • Park J, 2007. Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters. Chaos Sol Fract, 34(4):1154–1159. https://doi.org/10.1016/j.chaos.2006.04.053

    Article  MathSciNet  MATH  Google Scholar 

  • Park J, Kwon O, Lee S, 2008. LMI optimization approach to stabilization of Genesio-Tesi chaotic system via dynamic controller. Appl Math Comput, 196:200–206. https://doi.org/10.1016/j.amc.2007.05.045

    MathSciNet  MATH  Google Scholar 

  • Podlubny I, 1999a. Fractional differential equations. Mathematics in Science & Engineering, San Diego, USA.

    MATH  Google Scholar 

  • Podlubny I, 1999b. Fractional-order systems and PIλDµ controllers. IEEE Trans Autom Contr, 44(1):208–214. https://doi.org/10.1109/9.739144

    Article  MathSciNet  MATH  Google Scholar 

  • Rabah K, Ladaci S, Lashab M, 2015a. Stabilization of fractional Chen chaotic system by linear feedback control. 3rd IEEE Int Conf on Control, Engineering & Information Technology, p.1–5. https://doi.org/10.1109/CEIT.2015.7232990

    Google Scholar 

  • Rabah K, Ladaci S, Lashab M, 2015b. State feedback with fractional PIλDµ control structure for Genesio-Tesi chaos stabilization. 16th IEEE Int Conf on Sciences and Techniques of Automatic Control & Computer Engineering, p.328–333. https://doi.org/10.1109/STA.2015.7505112

    Google Scholar 

  • Rabah K, Ladaci S, Lashab M, 2016. Stabilization of a Genesio-Tesi chaotic system using a fractional order PIλDµ regulator. Int J Sci Tech Autom Contr Comput Eng, 10(1):2085–2090.

    Google Scholar 

  • Tang Y, Cui M, Hua C, et al., 2012. Optimum design of fractional order PIkDl controller for AVR system using chaotic ant swarm. Expert Syst Appl, 39:6887–6896. https://doi.org/10.1016/j.eswa.2012.01.007

    Article  Google Scholar 

  • Tavazoei M, Haeri M, 2008. Stabilization of unstable fixed points of chaotic fractional order systems by a state fractional PI controller. Eur J Contr, 3:247–257. https://doi.org/10.3166/ejc.14.247-257

    Article  MathSciNet  MATH  Google Scholar 

  • Wang G, 2010. Stabilization and synchronization of Genesio-Tesi system via single variable feedback controller. Phys Lett A, 374:2831–2834. https://doi.org/10.1016/j.physleta.2010.05.007

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Ladaci.

Additional information

Project supported by the Ministry of Higher Education and Scientific Research, Algeria (CNEPRU No. A10N01UN210120150002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabah, K., Ladaci, S. & Lashab, M. Bifurcation-based fractional-order PIλDμ controller design approach for nonlinear chaotic systems. Frontiers Inf Technol Electronic Eng 19, 180–191 (2018). https://doi.org/10.1631/FITEE.1601543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601543

Key words

CLC number