Abstract
We propose a novel approach called the robust fractional-order proportional-integral-derivative (FOPID) controller, to stabilize a perturbed nonlinear chaotic system on one of its unstable fixed points. The stability analysis of the nonlinear chaotic system is made based on the proportional-integral-derivative actions using the bifurcation diagram. We extract an initial set of controller parameters, which are subsequently optimized using a quadratic criterion. The integral and derivative fractional orders are also identified by this quadratic criterion. By applying numerical simulations on two nonlinear systems, namely the multi-scroll Chen system and the Genesio-Tesi system, we show that the fractional PIλDμ controller provides the best closed-loop system performance in stabilizing the unstable fixed points, even in the presence of random perturbation.
Similar content being viewed by others
References
Berns D, Moiola J, Chen G, 1998. Feedback control of limit cycle amplitude from a frequency domain approach. Automatica, 34(12):1567–1573. https://doi.org/10.1016/S0005-1098(98)80010-1
Bouafoura M, Braiek N, 2010. PIλDµ controller design for integer and fractional plants using piecewise orthogonal functions. Commun Nonl Sci Numer Simul, 15:1267–1278. https://doi.org/10.1016/j.cnsns.2009.05.047
Boukabou A, Chebbah A, Belmahboul A, 2007. Stabilizing unstable periodic orbits of the multi-scroll Chua’s attractor. Nonl Anal Model Contr, 12(4):469–477.
Charef A, Assabaa M, Ladaci S, et al., 2013. Fractional order adaptive controller for stabilized systems via high-gain feedback. IET Contr Theory Appl, 7(6):822–828. https://doi.org/10.1049/iet-cta.2012.0309
Chen D, Liu Y, Ma X, et al., 2012. Control of a class of fractional-order chaotic systems via sliding mode. Nonl Dynam, 67:893–901. https://doi.org/10.1007/s11071-011-0002-x
Chen D, Zhao W, Sprott J, et al., 2013. Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonl Dynam, 73(3):1495–1505. https://doi.org/10.1007/s11071-013-0880-1
Chen D, Zhang R, Liu X, et al., 2014. Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun Nonl Sci Numer Simul, 19:4105–4121. https://doi.org/10.1016/j.cnsns.2014.05.005
Chen L, Zhao T, Li W, et al., 2016. Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PIλDµ feedback controller. Nonl Dynam, 83(1):529–539. https://doi.org/10.1007/s11071-015-2345-1
Chen Z, Yuan X, Ji B, et al., 2014. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conv Manag, 84:390–404. https://doi.org/10.1016/j.enconman.2014.04.052
Colonius F, Grne L, 2002. Dynamics, Bifurcations, and Control. Springer Science & Business Media, New York, USA.
Dadras S, Momeni H, 2009. Control uncertain Genesio-Tesi chaotic system: adaptive sliding mode approach. Chaos Sol Fract, 42:3140–3146. https://doi.org/10.1016/j.chaos.2009.04.018
Delavari H, Ghaderi R, Ranjbar N, et al., 2010. Adaptive fractional PID controller for robot manipulator. 4th Int Workshop on Fractional Differentiation and its Applications, p.1–7.
Diethlem K, 2003. Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing, 71:305–319. https://doi.org/10.1007/s00607-003-0033-3
Ditto W, 1996. Applications of chaos in biology and medicine. Chaos Chang Nat Sci Med, 376:175–202. https://doi.org/10.1063/1.51060
Faieghi MR, Delavari H, 2012. Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun Nonl Sci Numer Simul, 17:731–741. https://doi.org/10.1016/j.cnsns.2011.05.038
Faieghi MR, Naderi M, Jalali AA, 2011. Design of fractionalorder PID for ship roll motion control using chaos embedded PSO algorithm. 2nd Int Conf on Control, Instrumentation, and Automation, p.606–610. https://doi.org/10.1109/ICCIAutom.2011.6356727
Fayazi A, Rafsanjani H, 2011. Synchronization in the Genesio-Tesi and Coullet system using a fractional-order adaptive controller. 9th IEEE Int Conf on Control and Automation, p.889–894. https://doi.org/10.1109/ICCA.2011.6137988
Genesio R, Tesi A, 1992. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica, 28(3):531–548. https://doi.org/10.1016/0005-1098(92)90177-H
Ghamati M, Balochian S, 2015. Design of adaptive sliding mode control for synchronization Genesio-Tesi chaotic system. Chaos Sol Fract, 75:111–117. https://doi.org/10.1016/j.chaos.2015.02.010
Gholipour R, Khosravi A, Mojallali H, 2012. Intelligent back stepping control for Genesio-Tesi chaotic system using a chaotic particle swarm optimization algorithm. Int J Comput Electr Eng, 4(5):618–625. https://doi.org/10.7763/IJCEE.2012.v4.570
Hadef S, Boukabou A, 2014. Control of multi-scroll Chen system. J Frankl Inst, 351:2728–2741. https://doi.org/10.1016/j.jfranklin.2014.01.015
Harb A, Abdel-Jabbar N, 2003. Controlling Hopf bifurcation and chaos in a small power system. Chaos Sol Fract, 18:1055–1063. https://doi.org/10.1016/S0960-0779(03)00073-0
Hentenryck P, Bent R, Upfal E, 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley.
Hosseinia S, Ghadri R, Ranjbar A, et al., 2010. Control of chaos via fractional order state feedback controller. In: New Trend in Nanotechnology and Fractional Calculus Applications. Springer, Netherlands, p.511–519. https://doi.org/10.1007/978-90-481-3293-5_46
Ladaci S, Bensafia Y, 2016. Indirect fractional order pole assignment based adaptive control. Int J Eng Sci Technol, 19:518–530. https://doi.org/10.1016/j.jestch.2015.09.004
Ladaci S, Charef A, 2006a. An adaptive fractional PIλDµ controller. 6th Int Symp on Tools and Methods of Competitive Engineering, p.1533–1540.
Ladaci S, Charef A, 2006b. On fractional adaptive control. Nonl Dynam, 43(4):365–378. https://doi.org/10.1007/s11071-006-0159-x
Lamba P, Hudson J, 1987. Experiments on bifurcations to chaos in a forced chemical reactor. Chem Eng Sci, 42:1–8. https://doi.org/10.1016/0009-2509(87)80203-8
Liu X, Shen X, Zhang H, 2012. Multi-scroll chatic and hyperchaotic attractors generated from Chen system. Int J Bifurc Chaos, 22(2):1250033. https://doi.org/10.1142/S0218127412500332
Liu Y, 2012. Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system. Nonl Dynam, 67:89–96. https://doi.org/10.1007/s11071-011-9960-2
Liu Y, Yang Q, 2010. Dynamics of a new Lorenz-like chaotic system. Nonl Anal Real World Appl, 11(4):2563–2572. https://doi.org/10.1016/j.nonrwa.2009.09.001
Ma J, Wang C, Tang J, et al., 2009. Suppression of the spiral wave and turbulence in the excitability-modulated media. Int J Theor Phys, 48:150–157. https://doi.org/10.1007/s10773-008-9790-2
Machado J, 1997. Analysis and design of fractional-order digital control systems. J Syst Anal Model Simul, 27(2-3):107–122.
Machado J, Galhano A, 2009. Approximating fractional derivatives in the perspective of system control. Nonl Dynam, 56:401–407. https://doi.org/10.1007/s11071-008-9409-4
Neçaibia A, Ladaci S, 2014. Self-tuning fractional order PIλDµ controller based on extremum seeking approach. Int J Autom Contr, 8(2):99–121. https://doi.org/10.1504/IJAAC.2014.063361
Oustaloup A, Mathieu B, 1991. La commande CRONE (in French). HERMES Science Publ., Paris.
Pan I, Das S, 2012. Chaotic multi-objective optimization based design of fractional order PIkDl controller in AVR system. Electr Power Energy Syst, 43:393–407. https://doi.org/10.1016/j.ijepes.2012.06.034
Park J, 2007. Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters. Chaos Sol Fract, 34(4):1154–1159. https://doi.org/10.1016/j.chaos.2006.04.053
Park J, Kwon O, Lee S, 2008. LMI optimization approach to stabilization of Genesio-Tesi chaotic system via dynamic controller. Appl Math Comput, 196:200–206. https://doi.org/10.1016/j.amc.2007.05.045
Podlubny I, 1999a. Fractional differential equations. Mathematics in Science & Engineering, San Diego, USA.
Podlubny I, 1999b. Fractional-order systems and PIλDµ controllers. IEEE Trans Autom Contr, 44(1):208–214. https://doi.org/10.1109/9.739144
Rabah K, Ladaci S, Lashab M, 2015a. Stabilization of fractional Chen chaotic system by linear feedback control. 3rd IEEE Int Conf on Control, Engineering & Information Technology, p.1–5. https://doi.org/10.1109/CEIT.2015.7232990
Rabah K, Ladaci S, Lashab M, 2015b. State feedback with fractional PIλDµ control structure for Genesio-Tesi chaos stabilization. 16th IEEE Int Conf on Sciences and Techniques of Automatic Control & Computer Engineering, p.328–333. https://doi.org/10.1109/STA.2015.7505112
Rabah K, Ladaci S, Lashab M, 2016. Stabilization of a Genesio-Tesi chaotic system using a fractional order PIλDµ regulator. Int J Sci Tech Autom Contr Comput Eng, 10(1):2085–2090.
Tang Y, Cui M, Hua C, et al., 2012. Optimum design of fractional order PIkDl controller for AVR system using chaotic ant swarm. Expert Syst Appl, 39:6887–6896. https://doi.org/10.1016/j.eswa.2012.01.007
Tavazoei M, Haeri M, 2008. Stabilization of unstable fixed points of chaotic fractional order systems by a state fractional PI controller. Eur J Contr, 3:247–257. https://doi.org/10.3166/ejc.14.247-257
Wang G, 2010. Stabilization and synchronization of Genesio-Tesi system via single variable feedback controller. Phys Lett A, 374:2831–2834. https://doi.org/10.1016/j.physleta.2010.05.007
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Ministry of Higher Education and Scientific Research, Algeria (CNEPRU No. A10N01UN210120150002)
Rights and permissions
About this article
Cite this article
Rabah, K., Ladaci, S. & Lashab, M. Bifurcation-based fractional-order PIλDμ controller design approach for nonlinear chaotic systems. Frontiers Inf Technol Electronic Eng 19, 180–191 (2018). https://doi.org/10.1631/FITEE.1601543
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601543
Key words
- Fractional order system
- Bifurcation diagram
- Fractional PIλDμ controller
- Multi-scroll Chen chaotic system
- Genesio-Tesi chaotic system