Skip to main content
Log in

An embedded lightweight GUI component library and ergonomics optimization method for industry process monitoring

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Developing an efficient and robust lightweight graphic user interface (GUI) for industry process monitoring is always a challenging task. Current implementation methods for embedded GUI are with the matters of real-time processing and ergonomics performance. To address the issue, an embedded lightweight GUI component library design method based on quasar technology embedded (Qt/E) is proposed. First, an entity-relationship (E-R) model for the GUI library is developed to define the functional framework and data coupling relations. Second, a cross-compilation environment is constructed, and the Qt/E shared library files are tailored to satisfy the requirements of embedded target systems. Third, by using the signal-slot communication interfaces, a message mapping mechanism that does not require a call-back pointer is developed, and the context switching performance is improved. According to the multi-thread method, the parallel task processing capabilities for data collection, calculation, and display are enhanced, and the real-time performance and robustness are guaranteed. Finally, the human-computer interaction process is optimized by a scrolling page method, and the ergonomics performance is verified by the industrial psychology methods. Two numerical cases and five industrial experiments show that the proposed method can increase real-time read-write correction ratios by more than 26% and 29%, compared with Windows-CE-GUI and Android-GUI, respectively. The component library can be tailored to 900 KB and supports 12 hardware platforms. The average session switch time can be controlled within 0.6 s and six key indexes for ergonomics are verified by different industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acciani G, Fornarelli G, Giaquinto A, 2011. A fuzzy method for global quality index evaluation of solder joints in surface mount technology. IEEE Trans Ind Inform, 7(1):115–124. https://doi.org/10.1109/TII.2010.2076292

    Article  Google Scholar 

  • Ahn SH, Sul D, Choi SH, et al., 2006. Implementation of lightweight graphic library builder for embedded system. IEEE Int Conf on Advanced Communication Technology, p.166–168. https://doi.org/10.1109/ICACT.2006.205944

    Google Scholar 

  • Barrero F, Toral S, Vargas M, et al., 2010. Internet in the de-velopment of future road-traffic control systems. Internet Res, 20(2):154–168. https://doi.org/10.1108/10662241011032227

    Article  Google Scholar 

  • Cecotti H, 2016. A multimodal gaze-controlled virtual key-board. IEEE Trans Hum-Mach Syst, 46(4):601–606. https://doi.org/10.1109/THMS.2016.2537749

    Article  Google Scholar 

  • Chen ST, Tan DP, 2018. A SA-ANN-based modeling method for human cognition mechanism and the PSACO cogni-tion algorithm. Complexity, 2018:6264124. https://doi.org/10.1155/2018/6264124

    Google Scholar 

  • Chevalier A, Kicka M, 2006. Web designers and web users: influence of the ergonomic quality of the web site on the information search. Int J Hum-Comput Stud, 64(10): 1031–1048. https://doi.org/10.1016/j.ijhcs.2006.06.002

    Article  Google Scholar 

  • Dalheimer MK, Hansen S, 2002. Embedded systems: embedded development with qt/embedded. Dr Dobbs J, 27(3):48–54.

    Google Scholar 

  • Drossu R, Obradovic Z, Fletcher J, 1996. A flexible graphical user interface for embedding heterogeneous neural net-work simulators. IEEE Trans Edu, 39(3):367–374. https://doi.org/10.1109/13.538760

    Article  Google Scholar 

  • Du F, 2008. GUI Design Based on Ergonomics. MS Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China (in Chinese).

    Google Scholar 

  • Ji SM, Xiao FQ, Tan DP, 2010. Analytical method for softness abrasive flow field based on discrete phase model. Sci China Technol Sci, 53(10):2867–2877. https://doi.org/10.1007/s11431-010-4046-9

    Article  Google Scholar 

  • Ji SM, Weng XX, Tan DP, 2012. Analytical method of softness abrasive two-phase flow field based on 2D model of LSM. Acta Phys Sin, 61(1):010205.

    Google Scholar 

  • Ji SM, Ge JQ, Tan DP, 2017. Wall contact effects of particle- wall collision process in a two-phase particle fluid. J Zhejiang Univ-Sci A (Appl Phys amp; Eng), 18(12):958–973. https://doi.org/10.1631/jzus.A1700039

    Article  Google Scholar 

  • Jin F, Wu ZH, 2008. Lightweight graphics device driver and graphical user interface based on embedded Linux. Trans Beijing Inst Technol, 28(3):233–236. https://doi.org/10.15918/j.tbit1001-0645.2008.03.018

    Google Scholar 

  • Li C, Ji SM, Tan DP, 2012. Study on machinability and the wall region of solid-liquid two phase softness abrasive flow. Int J Adv Manuf Technol, 61(9-12):975–987. https://doi.org/10.1007/s00170-011-3621-y

    Article  Google Scholar 

  • Li C, Ji SM, Tan DP, 2013. Multiple-loop digital control method for 400Hz inverter system based on p.ase feed-back. IEEE Trans Power Electron, 28(1):408–417. https://doi.org/10.1109/TPEL.2012.2188043

    Article  Google Scholar 

  • Li J, Ji SM, Tan DP, 2017. Improved soft abrasive flow fin-ishing method based on turbulent kinetic energy enhanc-ing. Chin J Mech Eng, 30(2):301–309. https://doi.org/10.1007/s10033-017-0071-y

    Article  Google Scholar 

  • Li X, Horie M, Kagawa T, 2014. Pressure-distribution methods for estimating lifting force of a swirl gripper. IEEE/ASME Trans Mechatron, 19(2):707–718. https://doi.org/10.1109/TMECH.2013.2256793

    Article  Google Scholar 

  • Li X, Li N, Tao GL, 2015. Experimental comparison of Ber-noulli gripper and vortex gripper. Int J Prec Eng Manuf, 16(10):2081–2090. https://doi.org/10.1007/s12541-015-0270-3

    Article  Google Scholar 

  • Liao YX, Li X, Zhong W, et al., 2016. Study of pressure drop-flow rate and flow resistance characteristics of heated porous materials under local thermal non-equilibrium conditions. Int J Heat Mass Transf, 102:528–543. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.101

    Article  Google Scholar 

  • Lin ZS, Yu SM, Lu JH, 2015. Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans Circ Syst Video Technol, 25(7):1203–1216. https://doi.org/10.1109/TCSVT.2014.2369711

    Article  Google Scholar 

  • Mazzei D, Vozzi F, Cisternino A, et al., 2008. A high-throughput bioreactor system for simulating physiological environments. IEEE Trans Ind Electron, 55(9):3273–3280. https://doi.org/10.1109/TIE.2008.928122

    Article  Google Scholar 

  • Park J, Lee J, 2011. A beacon color code scheduling for the localization of multiple robots. IEEE Trans Ind Inform, 7(3):467–475. https://doi.org/10.1109/TII.2011.2158833

    Article  Google Scholar 

  • Ramos MA,Penteado RAD, 2008. Embedded software revi-talization through component mining and software prod-uct line techniques. J Univ Comput Sci, 14(8):1207–1227. https://doi.org/10.3217/jucs-014-08-1211

    Google Scholar 

  • Rehault F, 2010. Windows mobile advanced forensics: an alternative to existing tools. Dig Invest, 7(1-2):38–47. https://doi.org/10.1016/j.diin.2010.08.003

    Article  Google Scholar 

  • Riskedal E, 2008. Qt and Windows CE. Dr Dobbs J, 33(6): 30–45.

    Google Scholar 

  • Saponara S, Petri E, Fanucci L, et al., 2011. Sensor modeling, low-complexity fusion algorithms, and mixed-signal ICprototyping for gas measures in low-emission vehicles. IEEE Trans Instrum Meas, 60(2):372–384. https://doi.org/10.1109/TIM.2010.2084230

    Article  Google Scholar 

  • Steblovnik K, Zazula D, 2011. A novel agent-based concept of household appliances. J Intell Manuf, 22(1):73–88. https://doi.org/10.1007/s10845-009-0279-5

    Article  Google Scholar 

  • Su LJ, Zheng NG, Yao M, et al., 2014. A computational model of the hybrid bio-machine MPMS for ratbots navigation. IEEE Intell Syst, 29(6):5–13. https://doi.org/10.1109/MIS.2014.91

    Article  Google Scholar 

  • Tan DP, Zhang LB, 2014. A WP-based nonlinear vibration sensing method for invisible liquid steel slag detection. Sensor Actuat B Chem, 202:1257–1269. https://doi.org/10.1016/j.snb.2014.06.014

    Article  Google Scholar 

  • Tan DP, Ji SM, Li PY, et al., 2010. Development of vibration style ladle slag detection method and the key technologies. Sci China Technol Sci, 53(9):2378–2387. https://doi.org/10.1007/s11431-010-4073-6

    Article  Google Scholar 

  • Tan DP, Ji SM, Jin MS, 2013a. Intelligent computer-aided instruction modeling and a method to optimize study strategies for parallel robot instruction. IEEE Trans Edu, 56(3):268–273. https://doi.org/10.1109/TE.2012.2212707

    Article  Google Scholar 

  • Tan DP, Li PY, Ji YX, et al., 2013b. SA-ANN-based slag carry-over detection method and the embedded WME platform. IEEE Trans Ind Electron, 60(10):4702–4713. https://doi.org/10.1109/TIE.2012.2213559

    Article  Google Scholar 

  • Tan DP, Ji SM, Fu YZ, 2016a. An improved soft abrasive flow finishing method based on fluid collision theory. Int J Adv Manuf Technol, 85(5-8):1261–1274. https://doi.org/10.1007/s00170-015-8044-8

    Article  Google Scholar 

  • Tan DP, Yang T, Zhao J, et al., 2016b. Free sink vortex Ekman suction-extraction evolution mechanism. Acta Phys Sin, 65(5):054701. https://doi.org/10.7498/aps.65.054701

    Google Scholar 

  • Tan DP, Zhang LB, Ai QL, 2016c. An embedded self-adapting network service framework for networked manufacturing system. J Intell Manuf, in press. https://doi.org/10.1007/s10845-016-1265-3

    Google Scholar 

  • Tan DP, Li L, Zhu YL, et al., 2017a. An embedded cloud da-tabase service method for distributed industry monitoring. IEEE Trans Ind Inform, in press. https:// doi.org/10.1109/TII.2017.2773644

    Google Scholar 

  • Tan DP, Ni YS, Zhang LB, 2017b. Two-phase sink vortex suction mechanism and penetration dynamic characteris-tics in ladle teeming process. J Iron Steel Res Int, 24(7): 669–677. https://doi.org/10.1016/S1006-706X(17)30101-2

    Article  Google Scholar 

  • Veltcheva AD, Soares CG, 2012. Analysis of abnormal wave groups in Hurricane Camille by the Hilbert Huang trans-form method. Ocean Eng, 42:102–111. https://doi.org/10.1016/j.oceaneng.2011.12.013

    Article  Google Scholar 

  • Wang J, Li DJ, Yang CJ, et al., 2015. Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network. Front Inform Technol Electron Eng, 16(12):1034–1045. https://doi.org/10.1631/FITEE.1500099

    Article  Google Scholar 

  • Wu ZH, Zheng NG, Zhang SW, et al., 2016. Maze learning by a hybrid brain-computer system. Sci Rep, 6:31746. https://doi.org/10.1038/srep31746

    Article  Google Scholar 

  • Wulf V, Pipek V, Won M, 2008. Component-based tailorability: enabling highly flexible software applications. Int J Hum Comput Stud, 66(1):1–22. https://doi.org/10.1016/j.ijhcs.2007.08.007

    Article  Google Scholar 

  • Xu LD, Viriyasitavat W, Ruchikachorn P, et al., 2012. Using propositional logic for requirements verification of ser-vice workflow. IEEE Trans Ind Inform, 8(3):639–646. https://doi.org/10.1109/TII.2012.2187908

    Article  Google Scholar 

  • Yao MQ, Yang K, Xu CY, et al., 2015. Design of a novel RTD-based three-variable universal logic gate. Front In-form Technol Electron Eng, 16(8):694–699. https://doi.org/10.1631/FITEE.1500102

    Article  Google Scholar 

  • Yin S, Wang G, Gao H, 2015. Data-driven process monitoring based on modified orthogonal projections to latent struc-tures. IEEE Trans Contr Syst Technol, 24(4):1480–1487. https://doi.org/10.1109/TCST.2015.2481318

    Article  Google Scholar 

  • Zeng X, Ji SM, Tan DP, et al., 2013. Softness consolidation abrasives material removal characteristic oriented to laser hardening surface. Int J Adv Manuf Technol, 69(9-12): 2323–2332. https://doi.org/10.1007/s00170-013-4985-y

    Article  Google Scholar 

  • Zeng X, Ji SM, Jin MS, et al., 2016. Research on dynamic characteristic of softness consolidation abrasives in ma-chining process. Int J Adv Manuf Technol, 82(5-8):1115–1125. https://doi.org/10.1007/s00170-015-7392-8

    Article  Google Scholar 

  • Zhang K, Kang JU, 2011. Real-time numerical dispersion compensation using graphics processing unit for Fourier- domain optical coherence tomography. Electron Lett, 47(5):309–310. https://doi.org/10.1049/el.2011.0065

    Article  Google Scholar 

  • Zhang M, Jiang JZ, Liu CH, 2013. Development of a multi- function gateway node oriented environment monitoring in greenhouse. Sens Lett, 11(6-7):1236–1239. https://doi.org/10.1166/sl.2013.2852

    Article  Google Scholar 

  • Zheng NG, Wu Z, Lin M, et al., 2010a. Enhancing battery efficiency for pervasive health-monitoring systems based on electronic textiles. IEEE Trans Inform Technol Biomed, 14(2):350–359. https://doi.org/10.1109/TITB.2009.2034972

    Article  Google Scholar 

  • Zheng NG, Wu ZH, Lin M, et al., 2010b. Infrastructure and reliability analysis of electric networks for E-textiles. IEEE Trans Syst Man Cybern Part C, 40(1):36–51. https://doi.org/10.1109/TSMCC.2009.2031497

    Article  Google Scholar 

  • Zheng NG, Su LJ, Zhang DQ, et al., 2015. A computational model for ratbot locomotion based on cyborg intelligence. Neurocomputing, 170(C):92–97. https://doi.org/10.1016/j.neucom.2014.12.115

    Article  Google Scholar 

  • Zhou HJ, Xiang R, 2013. MicroWindows-based multi-device support intelligent Chinese input system. J Comput Appl, 33(7):2067–2070. https://doi.org/10.11772/j.issn.1001-9081.2013.07.2067

    Google Scholar 

  • Zhuo XF, Fan JB, Chen B, 2002. Application of Linux multi-lineality in GUI programming. J Southwest Univ Sci Technol, 17(3):21–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ting Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51775501, 51375446, U1509212, and 51405441), the Zhejiang Provincial Natural Science Foundation, China (No. LR16E050001), and the Zhejiang Provincial Health Department Program, China (No. 2015KYA067)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Dp., Chen, St., Bao, Gj. et al. An embedded lightweight GUI component library and ergonomics optimization method for industry process monitoring. Frontiers Inf Technol Electronic Eng 19, 604–625 (2018). https://doi.org/10.1631/FITEE.1601660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601660

Key words

CLC number

Navigation