Skip to main content
Log in

Parameter estimation in exponential models by linear and nonlinear fitting methods

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Estimation of unknown parameters in exponential models by linear and nonlinear fitting methods is discussed. Based on the extreme value theorem and Taylor series expansion, it is proved theoretically that the parameters estimated by the linear fitting method alone cannot minimize the sum of the squared residual errors in the measurement data when measurement noise is involved in the data. Numerical simulation is performed to compare the performance of the linear and nonlinear fitting methods. Simulation results show that the linear method can obtain only a suboptimal estimate of the unknown parameters and that the nonlinear method gives more accurate results. Application of the fitting methods is demonstrated where the water spectral attenuation coefficient is estimated from underwater images and imaging distances, which supports the improvement in the accuracy of parameter estimation by the nonlinear fitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adi, N.S., 2015. Characterisation of the light environment and biophysical parameters of seagrass using remote sensing. PhD Thesis, The University of Queensland, Brisbane, Australia, p.23–38. http://dx.doi.org/10.14264/uql.2015.998

    Google Scholar 

  • Åhlén, J., Bengtsson, E., Sundgren, D., 2006. Evaluation of underwater spectral data for color correction applications. Proc. 5th WSEAS Int. Conf. on Circuits, Systems, Electronics, Control & Signal Processing, p.321–326.

    Google Scholar 

  • Bardaji, R., Sánchez, A.M., Simon, C., et al., 2016. Estimating the underwater diffuse attenuation coefficient with a low-cost instrument: the KdUINO DIY buoy. Sensors, 16(3): 373–387. http://dx.doi.org/10.3390/s16030373

    Article  Google Scholar 

  • Floudas, C.A., Pardalos, P.M., 2001. Encyclopedia of Optimization. Kluwer Academic Publishers, Norwell, p.1129–1134. http://dx.doi.org/10.1007/0-306-48332-7

    Google Scholar 

  • Guo, Y.L., Song, H., Liu, H.B., et al., 2016. Model-based restoration of underwater spectral images captured with narrowband filters. Opt. Expr., 24(12): 13101–13120. http://dx.doi.org/10.1364/OE.24.013101

    Article  Google Scholar 

  • Hartley, H.O., 1961. The modified Gauss-Newton method for the fitting of nonlinear regression functions by least squares. Technometrics, 3(2): 269–280. http://dx.doi.org/10.2307/1266117

    Article  MathSciNet  Google Scholar 

  • He, Q.R., Li, L.P., 2015. Algorithm study on reducing frequency measurement variance of acousto-optic spectrum analyzer. Infrar. Laser Eng., 44(5): 1564–1568(in Chinese).

    Google Scholar 

  • Kaeli, J.W., Singh, H., Murphy, C., et al., 2011. Improving color correction for underwater image surveys. Proc. IEEE/MTS Oceans, p.805–810.

    Google Scholar 

  • Lai, J.S., Yang, B., Lin, D.M., et al., 2013. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression. PLoS One, 8(10): e77007. http://dx.doi.org/10.1371/journal.pone.0077007

    Article  Google Scholar 

  • Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2: 164–168. http://dx.doi.org/10.1090/qam/10666

    Article  MathSciNet  Google Scholar 

  • Lieb, S.G., 1997. Simplex method of nonlinear least-squares: a logical complementary method to linear least-square analysis of data. J. Chem. Educat., 74(8): 1008–1011. http://dx.doi.org/10.1021/ed074p1008

    Article  Google Scholar 

  • Liu, C.Q., Ma, J.S., Shao, X.L., et al., 2013. Detection of Gaussian beam distribution of light intensity. Opt. Instrum., 35(6): 69–73(in Chinese). http://dx.doi.org/10.3969/j.issn.1005-5630.2013.06.014

    Google Scholar 

  • Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11(2): 431–441. http://dx.doi.org/10.1137/0111030

    Article  MathSciNet  Google Scholar 

  • Mascaro, J., Litton, C.M., Hughes, R.F., et al., 2011. Minimizing bias in biomass allometry: model selection and log-transformation of data. Biotropica, 43(6): 649–653. http://dx.doi.org/10.1111/j.1744-7429.2011.00798.x

    Article  Google Scholar 

  • Novković, D., Nadderd, L., Kandić, A., et al., 2006. Testing the exponential decay law of gold 198Au. Nucl. Instrum. Methods Phys. Res. Sect. A, 566(2): 477–480. http://dx.doi.org/10.1016/j.nima.2006.07.044

    Article  Google Scholar 

  • Peterson, P., Baker, E., McGaw, B., 2010. International Encyclopedia of Education. Elsevier Science, Oxford, p.339–346.

    Google Scholar 

  • Schechner, Y.Y., Karpel, N., 2004. Clear underwater vision. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.536–543. http://dx.doi.org/10.1109/CVPR.2004.1315078

    Google Scholar 

  • Semkow, T.M., 2007. Exponential decay law and nuclear statistics. In: Semkow, T.M., Pommé, S., Jerome, S., et al. (Eds.), Applied Modeling and Computations in Nuclear Science. ACS, Washington DC. http://dx.doi.org/10.1021/bk-2007-0945.ch004

    Google Scholar 

  • Simon, A., Shanmugam, P., 2016. Estimation of the spectral diffuse attenuation coefficient of downwelling irradiance in inland and coastal waters from hyperspectral remote sensing data: validation with experimental data. Int. J. Appl. Earth Observ. Geoinform., 49: 117–125. http://dx.doi.org/10.1016/j.jag.2016.02.003

    Article  Google Scholar 

  • Swinehart, D.F., 1962. The Beer-Lambert law. J. Chem. Educat., 39(7): 333–335. http://dx.doi.org/10.1021/ed039p333

    Article  Google Scholar 

  • Vickery, P.J., 2005. Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. Appl. Meteorol., 44: 1807–1826. http://dx.doi.org/10.1175/JAM2310.1

    Article  Google Scholar 

  • Wei, J.W., Lee, Z.P., 2013. Model of the attenuation coefficient of daily photosynthetically available radiation in the upper ocean. Methods Oceanogr., 8: 56–74. http://dx.doi.org/10.1016/j.mio.2013.12.001

    Article  Google Scholar 

  • Xiao, X., White, E.P., Hooten, M.B., et al., 2011. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 92(10): 1887–1894. http://dx.doi.org/10.1890/11-0538.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Yang or Hui Huang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61605038 and 11304278), the National High-Tech R&D Program (863) of China (No. 2014AA093400), and the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics (No. SOED1606)

ORCID: Hui HUANG, http://orcid.org/0000-0003-1204-3684

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Wu, Cp., Guo, Yl. et al. Parameter estimation in exponential models by linear and nonlinear fitting methods. J. Zhejiang Univ. - Sci. C 18, 434–444 (2017). https://doi.org/10.1631/FITEE.1601683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601683

Key words

CLC number

Navigation