Skip to main content
Log in

New method to determine optimum impedance of fault current limiters for symmetrical and/or asymmetrical faults in power systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

To select the type and value of the impedance of fault current limiters (FCLs) for power network designers, we introduce a new method to calculate the optimum value of FCL impedance depending on its position in the network. Due to the complexity of its impedance, the costs of both real and imaginary parts of FCL impedance are considered. The optimization of FCL impedance is based on a goal function that maximizes the reduction of the fault current while minimizing the costs. While the position of FCL in the network has an effect on the calculation of the optimum impedance value, the method for selecting FCL location is not the focus of this study. The proposed method for optimizing FCL impedance can be used for every network that has symmetrical and/or asymmetrical faults. We use a 14-bus IEEE network as an example to explain the process. The optimum FCL impedance used in this network is calculated by considering the vast range of costs for both real and imaginary parts of FCL impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitz A, Smedley KM, 2012. Survey of solid-state fault current limiters. IEEE Trans Power Electron, 27(6): 2770–2782. https://doi.org/10.1109/TPEL.2011.2174804

    Article  Google Scholar 

  • Alaraifi S, El Moursi MS, Zeineldin HH, 2013. Optimal allocation of HTS-FCL for power system security and stability enhancement. IEEE Trans Power Syst, 28(4): 4702–4711. https://doi.org/10.1109/TPWRS.2013.2273539

    Article  Google Scholar 

  • Christie R, 2012. Power System Test Case Archive. https://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm

    Google Scholar 

  • Cvoric D, de Haan, SWH, Ferreira JA, et al., 2010. New three-phase inductive FCL with common core and trifilar windings. IEEE Trans Power Del, 25(4):2246–2254. https://doi.org/10.1109/TPWRD.2010.2051688

    Article  Google Scholar 

  • Dam QB, Meliopoulos APS, 2006. Failure probability methodology for overdutied circuit breakers. 38th IEEE North American Power Symp, p.667–672. https://doi.org/10.1109/NAPS.2006.359644

    Google Scholar 

  • Dam QB, Meliopoulos APS, 2007. Reliability implications of increased fault currents and breaker failures. iREP Symp on Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability, p.1–8. https://doi.org/10.1109/IREP.2007.4410540

    Google Scholar 

  • Dam QB, Meliopoulos APS, Cokkinides GJ, 2013. A breakeroriented fault analysis methodology. Int Trans Electr Energy Syst, 23(7):1071–1082. https://doi.org/10.1002/etep.1638

    Article  Google Scholar 

  • Didier G, Lévêque J, 2014. Influence of fault type on the optimal location of superconducting fault current limiter in electrical power grid. Int J Electr Power Energy Syst, 56:279–285. https://doi.org/10.1016/j.ijepes.2013.11.018

    Article  Google Scholar 

  • Didier G, Bonnard CH, Lubin T, et al., 2015. Comparison between inductive and resistive sFCL in terms of current limitation and power system transient stability. Electr Power Syst Res, 125:150–158. https://doi.org/10.1016/j.epsr.2015.04.002

    Article  Google Scholar 

  • El Moursi MS, Hegazy R, 2013. Novel technique for reducing the high fault currents and enhancing the security of ADWEA power system. IEEE Trans Power Syst, 28(1): 140–148. https://doi.org/10.1109/TPWRS.2012.2207746

    Article  Google Scholar 

  • Fotuhi-Firuzabad M, Aminifar F, Rahmati I, 2012. Reliability study of HV substations equipped with the fault current limiter. IEEE Trans Power Del, 27(2):610–617. https://doi.org/10.1109/TPWRD.2011.2179122

    Article  Google Scholar 

  • Guo Y, Yokomizu Y, Matsumura T, 2001. Design guidelines of a flux-lock superconducting fault current limiter with AC magnetic field coil for a 6.6-kV distribution system. Electr Eng Jpn, 135(4):17–25. https://doi.org/10.1002/eej.1038

    Article  Google Scholar 

  • Haghifam MR, Ghaderi A, Abapour M, 2009. Enhancement circuit breaker reliability by using fault current limiter. IEEE Power & Energy Society General Meeting, p.1–5. https://doi.org/10.1109/PES.2009.5275260

    Google Scholar 

  • Hongesombut K, Mitani Y, Tsuji K, 2003. Optimal location assignment and design of superconducting fault current limiters applied to loop power systems. IEEE Trans Appl Supercond, 13(2):1828–1831. https://doi.org/10.1109/TASC.2003.812901

    Article  Google Scholar 

  • Hossen Heidary A, Radmanesh H, Fathi SH, et al., 2015. Series transformer based diode-bridge-type solid state fault current limiter. Front Inform Technol Electron Eng, 16(9):769–784. https://doi.org/10.1631/FITEE.1400428

    Article  Google Scholar 

  • Javadi H, 2011. Fault current limiter using a series impedance combined with bus sectionalizing circuit breaker. Int J Electr Power Energy Syst, 33(3):731–736. https://doi.org/10.1016/j.ijepes.2010.11.023

    Article  Google Scholar 

  • Kim SY, Bae IS, Kim JO, 2010. An optimal location for superconducting fault current limiter considering distribution reliability. IEEE Power and Energy Society General Meeting, p.1–5. https://doi.org/10.1109/PES.2010.5588064

    Google Scholar 

  • Kim SY, Kim WW, Kim JO, 2011. Evaluation of distribution reliability with superconducting fault current limiter. 10th IEEE Int Conf on Environment and Electrical Engineering, p.1–5. https://doi.org/10.1109/EEEIC.2011.5874570

    Google Scholar 

  • Kim SY, Kim WW, Kim JO, 2012. Determining the location of superconducting fault current limiter considering distribution reliability. IET Gener Transm Distr, 6(3): 240–246. https://doi.org/10.1049/iet-gtd.2011.0287

    Article  Google Scholar 

  • Kovalsky L, Yuan X, Tekletsadik K, et al., 2005. Applications of superconducting fault current limiters in electric power transmission systems. IEEE Trans Appl Supercond, 15(2): 2130–2133. https://doi.org/10.1109/TASC.2005.849471

    Article  Google Scholar 

  • Matsumura T, Shimizu H, Yokomizu Y, 2001. Design guideline of flux-lock type HTS fault current limiter for power system application. IEEE Trans Appl Supercond, 11(1):1956–1959. https://doi.org/10.1109/77.920235

    Article  Google Scholar 

  • Mukhopadhyay SC, Iwahara M, Yamada S, et al., 1998. Investigation of the performances of a permanent magnet biased fault current limiting reactor with a steel core. IEEE Trans Magn, 34(4):2150–2152. https://doi.org/10.1109/20.706833

    Article  Google Scholar 

  • Naderi SB, Jafari M, Tarafdar Hagh M, 2013. Parallelresonance-type fault current limiter. IEEE Trans Ind Electron, 60(7):2538–2546. https://doi.org/10.1109/TIE.2012.2196899

    Article  Google Scholar 

  • Nagata M, Tanaka K, Taniguchi H, 2001. FCL location selection in large scale power system. IEEE Trans Appl Supercond, 11(1):2489–2494. https://doi.org/10.1109/77.920370

    Article  Google Scholar 

  • Saadat H, 1999. Power System Analysis. WCB/McGraw-Hill.

    Google Scholar 

  • Seo HC, Kim CH, Rhee SB, et al., 2010. Superconducting fault current limiter application for reduction of the transformer inrush current: a decision scheme of the optimal insertion resistance. IEEE Trans Appl Supercond, 20(4): 2255–2264. https://doi.org/10.1109/TASC.2010.2048214

    Article  Google Scholar 

  • Shahriari SAA, Varjani AY, Haghifam MR, 2012. Cost reduction of distribution network protection in presence of distributed generation using optimized fault current limiter allocation. Int J Electr Power Energy Syst, 43(1): 1453–1459. https://doi.org/10.1016/j.ijepes.2012.06.071

    Article  Google Scholar 

  • Stemmle M, Neumann C, Merschel F, et al., 2007. Analysis of unsymmetrical faults in high voltage power systems with superconducting fault current limiters. IEEE Trans Appl Supercond, 17(2):2347–2350. https://doi.org/10.1109/TASC.2007.899136

    Article  Google Scholar 

  • Teng JH, Lu CN, 2010. Optimum fault current limiter placement with search space reduction technique. IET Gener Transm Distr, 4(4):485–494. https://doi.org/10.1049/iet-gtd.2009.0340

    Article  Google Scholar 

  • Yamaguchi H, Kataoka T, 2007. Current limiting characteristics of transformer type superconducting fault current limiter with shunt impedance. IEEE Trans Appl Supercond, 17(2):1919–1922. https://doi.org/10.1109/TASC.2007.898494

    Article  Google Scholar 

  • Yousefi H, Aminifar F, Mirzaie M, 2016. Reliability assessment of HV substations equipped with fault current limiter considering changes of failure rate of components. IET Gener Transm Distr, 10(7):1504–1509. https://doi.org/10.1049/iet-gtd.2014.1250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Lesani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modaresi, M., Lesani, H. New method to determine optimum impedance of fault current limiters for symmetrical and/or asymmetrical faults in power systems. Frontiers Inf Technol Electronic Eng 19, 297–307 (2018). https://doi.org/10.1631/FITEE.1601689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601689

Key words

CLC number

Navigation