Skip to main content
Log in

Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (d 1q 1 and d 2q 2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d 1q 1 and d 2q 2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the exceptional performance of the proposed electrical pole-changing strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Khalik, A.S., Daoud, M.I., Ahmed, S., et al., 2014. Parameter identification of five-phase induction machines with single layer windings. IEEE Trans. Ind. Electron., 61(10): 5139–5154. https://doi.org/10.1109/TIE.2013.2297294

    Article  Google Scholar 

  • Abd Hafez, A.A., Todd, R., Forsyth, A.J., et al., 2011. Direct current ripple compensation for multi-phase fault-tolerant machines. IET Electr. Power Appl., 5(1): 28–36. https://doi.org/10.1049/iet-epa.2009.0217

    Article  Google Scholar 

  • Aliabad, A.D., Mirsalim, M., 2012. Analytic modeling and dynamic analysis of pole-changing line-start permanentmagnet motors. IET Electr. Power Appl., 6(3): 149–155. https://doi.org/10.1049/iet-epa.2011.0146

    Article  Google Scholar 

  • Aliabad, A.D., Mirsalim, M., Ershad, N.F., 2010. Line-start permanent-magnet motors: significant improvements in starting torque, synchronization, and steady-state performance. IEEE Trans. Magn., 46(12): 4066–4072. https://doi.org/10.1109/TMAG.2010.2070876

    Article  Google Scholar 

  • Barrero, F., Duran, M.J., 2016. Recent advances in the design, modeling and control of multiphase machines—part 1. IEEE Trans. Ind. Electron., 63(1): 449–458. https://doi.org/10.1109/TIE.2015.2447733

    Article  Google Scholar 

  • Deng, Y., Wang, Y.B., Teo, K.H., et al., 2016. A simplified space vector modulation scheme for multilevel converters. IEEE Trans. Power Electron., 31(3): 1873–1886. https://doi.org/10.1109/TPEL.2015.2429595

    Article  Google Scholar 

  • Dujic, D., Jones, M., Levi, E., et al., 2011. Switching ripple characteristics of space vector PWM schemes for fivephase two-level voltage source inverters—Part 1: flux harmonic distortion factors. IEEE Trans. Ind. Electron., 58(7): 2789–2798. https://doi.org/10.1109/TIE.2010.2070777

    Article  Google Scholar 

  • Duran, M.J., Barrero, F., 2016. Recent advances in the design, modeling and control of multiphase machines—part 2. IEEE Trans. Ind. Electron., 63(1): 459–468. https://doi.org/10.1109/TIE.2015.2448211

    Article  Google Scholar 

  • Duran, M.J., Prieto, J., Barrero, F., 2013. Space vector PWM with reduced common-mode voltage for five-phase induction motor drives operating in over-modulation zone. IEEE Trans. Power Electron., 28(8): 4030–4040. https://doi.org/10.1109/TPEL.2012.2229394

    Article  Google Scholar 

  • Ershad, N.F., Mirsalim, M., Aliabad, A.D., 2013. Line-start permanent magnet motors: proper design for polechanging starting method. IET Electr. Power Appl., 7(6): 470–476. https://doi.org/10.1049/iet-epa.2012.0059

    Article  Google Scholar 

  • Gao, W.B., Wang, Y.F., Homaifa, A., 1995. Discrete-time variable structure control systems. IEEE Trans. Ind. Electron., 42(2): 117–122. https://doi.org/10.1109/41.370376

    Article  Google Scholar 

  • Ge, B.M., Sun, D.S., Wu, W.L., 2013. Winding design, modeling, and control for pole-phase modulation induction motors. IEEE Trans. Magn., 49(2): 898–911. https://doi.org/10.1109/TMAG.2012.2208652

    Article  Google Scholar 

  • Gregor, R., Barrero, F., Toral, S.L., et al., 2010. Predictive space vector PWM current control method for asymmetrical dual three-phase induction motor drives. IET Electr. Power Appl., 4(1): 26–34. https://doi.org/10.1049/iet-epa.2008.0274

    Article  Google Scholar 

  • Hoang, K.D., Ren, Y., Zhu, Z.Q., et al., 2015. Modified switching-table strategy for reduction of current harmonics in direct torque controlled dual-three-phase permanent magnet synchronous machine drives. IET Electr. Power Appl., 9(1): 10–19. https://doi.org/10.1049/iet-epa.2013.0388

    Article  Google Scholar 

  • Jiang, S.Z., Chau, K.T., Chan, C.C., 2003. Spectral analysis of a new six-phase pole-changing induction motor drive for electric vehicles. IEEE Trans. Ind. Electron., 50(1): 123–131. https://doi.org/10.1109/TIE.2002.807662

    Article  Google Scholar 

  • Jones, M., Satiawan, N.W., Bodo, N., et al., 2012. A dual fivephase space-vector modulation algorithm based on the decomposition method. IEEE Trans. Ind. Appl., 48(6): 2110–2120. https://doi.org/10.1109/TIA.2012.2226422

    Article  Google Scholar 

  • Kelly, J.W., 2007. A Novel Control Scheme for a Pole-Changing Induction Motor Drive. PhD Thesis, Michigan State University, East Lansing, MI.

    Google Scholar 

  • Kelly, J.W., Strangas, E.G., 2007. Torque control during polechanging transition of a 3: 1 pole induction machine. Proc. Int. Conf. on Electrical Machines and Systems, p.1723–1728.

    Google Scholar 

  • Lee, J.D., Khoo, S., Wang, Z.B., 2013. DSP-based slidingmode control for electromagnetic-levitation preciseposition system. IEEE Trans. Ind. Inform., 9(2): 817–827. https://doi.org/10.1109/TII.2012.2219062

    Article  Google Scholar 

  • Levi, E., 2008. Multiphase electric machines for variablespeed applications. IEEE Trans. Ind. Electron., 55(5): 1893–1909. https://doi.org/10.1109/TIE.2008.918488

    Article  Google Scholar 

  • Levi, E., 2016. Advances in converter control and innovative exploitation of additional degrees of freedom for multi-phase machines. IEEE Trans. Ind. Electron., 63(1): 433–448. https://doi.org/10.1109/TIE.2015.2434999

    Article  Google Scholar 

  • Levi, E., Bojoi, R., Profumo, F., et al., 2007. Multiphase induction motor drives—a technology status review. IET Electr. Power Appl., 1(4): 489–516. https://doi.org/10.1049/iet-epa:20060342

    Article  Google Scholar 

  • Levi, E., Barrero, F., Duran, M.J., 2016. Multiphase machines and drives—revisited. IEEE Trans. Ind. Electron., 63(1): 429–432. https://doi.org/10.1109/TIE.2015.2493510

    Article  Google Scholar 

  • Li, F.H., Chau, K.T., Liu, C.H., 2016. Pole-changing fluxweakening DC-excited dual-memory machines for electric vehicles. IEEE Trans. Energy Conv., 31(1): 27–36. https://doi.org/10.1109/TEC.2015.2479458

    Article  Google Scholar 

  • Lipo, T.A., 1994. Analysis of concentrated winding induction machines for adjustable speed drive applications— experimental results. IEEE Trans. Energy Conv., 9(4): 695–700. https://doi.org/10.1109/60.368339

    Article  Google Scholar 

  • Lipo, T.A., White, J.C., 1991a. Analysis of a concentrated winding induction machine for adjustable speed drive applications: part 1 (motor analysis). IEEE Trans. Energy Conv., 6(4): 679–683. https://doi.org/10.1109/60.103641

    Article  Google Scholar 

  • Lipo, T.A., White, J.C., 1991b. Analysis of a concentrated winding induction machine for adjustable speed drive applications: part 2 (motor design and performance). IEEE Trans. Energy Conv., 6(4): 684–692. https://doi.org/10.1109/60.103642

    Article  Google Scholar 

  • Luis, S.I., 2014. Space phases theory and control of multiphase machines through their decoupling into equivalent threephase machines. Electr. Eng., 96(1): 79–94. https://doi.org/10.1007/s00202-013-0278-6

    Article  Google Scholar 

  • Martin, J., Dujic, D., Levi, E., et al., 2011. Switching ripple characteristics of space vector PWM schemes for fivephase two-level voltage source inverters—part 2: current ripple. IEEE Trans. Ind. Electron., 58(7): 2799–2808. https://doi.org/10.1109/TIE.2010.2070778

    Article  Google Scholar 

  • Mengoni, M., Zarri, L., Gritli, Y., et al., 2015. Online detection of high-resistance connections in multiphase induction machines. IEEE Trans. Power Electron., 30(8): 4505–4513. https://doi.org/10.1109/TPEL.2014.2357439

    Article  Google Scholar 

  • Osama, M., Lipo, T.A., 1997. Modeling and analysis of a widespeed-range induction motor drive based on electrical pole changing. IEEE Trans. Ind. Appl., 33(5): 1177–3184. https://doi.org/10.1109/IAS.1996.557047

    Article  Google Scholar 

  • Shi, L.W., Zhou, B., 2016. Analysis of a new five-phase fault-tolerant doubly salient brushless DC generator. IET Electr. Power Appl., 10(7): 633–640. https://doi.org/10.1049/iet-epa.2015.0589

    Article  Google Scholar 

  • Subotic, I., Bodo, N., Levi, E., et al., 2016. Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics. IET Electr. Power Appl., 10(3): 217–229. https://doi.org/10.1049/iet-epa.2015.0292

    Article  Google Scholar 

  • Tian, M.M., Wang, X.H., Li, G.Q., 2016. Line-start permanent magnet synchronous motor starting capability improvement using pole-changing method. 11th Conf. on Industrial Electronics and Applications, p.479–483.

    Google Scholar 

  • Tuan, D.M., Man, Z.H., Zhang, C.S., et al., 2013. Robust sliding mode learning control for uncertain discrete-time multi-input multi-output systems. IET Contr. Theory Appl., 8: 1045–1053. https://doi.org/10.1049/iet-cta.2013.0604

    Article  MathSciNet  Google Scholar 

  • Utkin, V.I., 1977. Variable structure systems with sliding modes. IEEE Trans. Autom. Contr., 22(2): 212–222. https://doi.org/10.1109/TAC.1977.1101446

    Article  MathSciNet  Google Scholar 

  • Utkin, V.I., Guldner, J., Shi, J., 1999. Sliding Mode Control in Electromechanical Systems. Taylor & Francis, London.

    Google Scholar 

  • Wang, D., Lin, H.Y., Yang, H., et al., 2015. Design and analysis of a variable-flux pole-changing permanent magnet memory machine. IEEE Trans. Magn., 51(11): 8113004. https://doi.org/10.1109/TMAG.2015.2448118

    Google Scholar 

  • Wang, D., Lin, H.Y., Yang, H., et al., 2016a. Cogging torque optimization of flux memory pole-changing permanent magnet machine. IEEE Trans. Appl. Supercond., 26(4): 0603105. https://doi.org/10.1109/TASC.2016.2535361

    Google Scholar 

  • Wang, D., Lin, H.Y., Yang, H., et al., 2016b. Design and investigation of a fractional slot pole-changing memory machine. 11th Int. Conf. on Ecological Vehicles and Renewable Energies, p.1–7. https://doi.org/10.1109/EVER.2016.7476408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-qiang Yang.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2013CB035600)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Jq., Yin, Rs., Zhang, Xj. et al. Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy. Frontiers Inf Technol Electronic Eng 18, 1151–1166 (2017). https://doi.org/10.1631/FITEE.1601728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601728

Key words

CLC number

Navigation