Abstract
Compared with complementary metal–oxide semiconductor (CMOS), the resonant tunneling device (RTD) has better performances; it is the most promising candidate for next-generation integrated circuit devices. The universal logic gate is an important unit circuit because of its powerful logic function, but there are few function synthesis algorithms that can implement an n-variable logical function by RTD-based universal logic gates. In this paper, we propose a new concept, i.e., the truth value matrix. With it a novel disjunctive decomposition algorithm can be used to decompose an arbitrary n-variable logical function into three-variable subset functions. On this basis, a novel function synthesis algorithm is proposed, which can implement arbitrary n-variable logical functions by RTD-based universal threshold logic gates (UTLGs), RTD-based three-variable XOR gates (XOR3s), and RTD-based three-variable universal logic gate (ULG3s). When this proposed function synthesis algorithm is used to implement an n-variable logical function, if the function is a directly disjunctive decomposition one, the circuit structure will be very simple, and if the function is a non-directly disjunctive decomposition one, the circuit structure will be simpler than when using only UTLGs or ULG3s. The proposed function synthesis algorithm is straightforward to program, and with this algorithm it is convenient to implement an arbitrary n-variable logical function by RTD-based universal logic gates.
Similar content being viewed by others
References
Altun, M., Riedel, M.D., 2012. Logic synthesis for switching lattices. IEEE Trans. Comput., 61(11): 1588–1600. https://doi.org/10.1109/TC.2011.170
Beiu, V., Quintana, J.M., Avedillo, M.J., 2003. VLSI imple-mentations of threshold logic—a comprehensive survey. IEEE Trans. Neur. Networks, 14(5): 1217–1243. https://doi.org/10.1109/TNN.2003.816365
Bertacco, V., Damiani, M., 1997. The disjunctive decomposi-tion of logic functions. IEEE/ACM Int. Conf. on Computer-Aided Design, p.78–82. https://doi.org/10.1109/ICCAD.1997.643371
Czajkowski, T.S., Brown, S.D., 2008. Functionally linear decomposition and synthesis of logic circuits for FPGAs. Comput.-Aided Des. Integr. Circ. Syst., 27(12): 2236–2249. https://doi.org/10.1109/TCAD.2008.2006144
Falkowski, B.J., Kannurao, S., 2001. Analysis of disjoint decomposition of balanced Boolean functions through the Walsh spectrum. Comput. Dig. Techn., 148(2): 71–78. https://doi.org/10.1049/ip-cdt:20010205
Fan, D.L., Sharad, M., Roy, K., 2014. Design and synthesis of ultralow energy spin-memristor threshold logic. IEEE Trans. Nanotechnol., 13(3): 574–583. https://doi.org/10.1109/TNANO.2014.2312177
Files, C.M., Perkowski, M.A., 2000. New multivalued func-tional decomposition algorithms based on MDDs. Comput.-Aided Des. Integr. Circ. Syst., 19(9): 1081–1086. https://doi.org/10.1109/43.863648
Hrynkiewicz, E., Kolodzinski, S., 2010. An Ashenhurst dis-joint and non-disjoint decomposition of logic functions in Reed-Muller spectral domain. Proc. 17th Int. Conf. on Mixed Design of Integrated Circuits and Systems, p.200–204.
Iwai, H., 2013. Future of nano CMOS technology. Proc. Symp. on Microelectronics Technology and Devices, p.1–10.
Kolodzinski, S., Hrynkiewicz, E., 2009. An utilisation of Boolean differential calculus in variables partition cal-culation for decomposition of logic functions. 12th Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems, p.34–37. https://doi.org/10.1109/DDECS.2009.5012095
Likharev, K.K., 2008. Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Opto-electron., 3(3): 203–230. https://doi.org/10.1166/JNO.2008.301
Liu, M.C., Lin, D.D., Pei, D.Y., 2011. Fast algebraic attacks and decomposition of symmetric Boolean functions. IEEE Trans. Inform. Theory, 57(7): 4817–4821. https://doi.org/10.1109/TIT.2011.2145690
Mazumder, P., Kulkarni, S., Bhattacharya, M., 1998. Digital circuit applications of resonant tunneling devices. Proc. IEEE, 86(4): 664–686. https://doi.org/10.1109/5.663544
Mirhoseini, S.M., Sharifi, M.J., Bahrepour, D., 2010. New RTD-based general threshold gate topologies and appli-cation to three-input XOR logic gates. J. Electr. Comput. Eng., 35(1): 1–4. https://doi.org/10.1155/2010/463925
Muramatsu, N., Okazaki, H., Waho, T., 2005. A novel oscil-lation circuit using a resonate-tunneling diode. IEEE Int. Symp. on Circuits and Systems, p.2341–2344. https://doi.org/10.1109/ISCAS.2005.1465094
Ngwira, S.M., Tshabalala, P., 2002. Neural network analysis for the identification of optimal variable orderings in the decomposition of complex logic functions. Comput. Dig. Techn., 149(5): 240–244. https://doi.org/10.1049/ip-cdt:20020405
Nikodem, M., 2013. Synthesis of multithreshold threshold gates based on negative differential resistance devices. IET Circ. Dev. Syst., 7(5): 232–242. https://doi.org/10.1049/iet-cds.2012.0368
Wei, Y., Shen, J.Z., 2011. Novel universal threshold logic gate based on RTD and its application. Microelectron. J., 42: 851–854. https://doi.org/10.1016/j.mejo.2011.04.005
Yao, M.Q., Yang, K., Xu, C.Y., et al., 2015. Design of a novel RTD-based three-variable universal logic gate. Front. Inform. Technol. Electron. Eng., 16(8): 694–699. https://doi.org/10.1631/FITEE.1500102
Zhang, R., Gupta, P., Zhong, L., 2005. Threshold network synthesis and optimization and its application to nano-technologies. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 24(1): 107–118. https://doi.org/10.1109/TCAD.2004.839468
Zheng, Y.X., Huang, C., 2009. Complete logic functionality of reconfigurable RTD circuit elements. IEEE Trans. Nanotechnol., 8(5): 631–642. https://doi.org/10.1109/TNANO.2009.2016563
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Zhejiang Provincial Natural Science Foun-dation, China (No. LY15F010011) and the National Natural Science Foundation of China (Nos. 61771179, 61471314, and 61271124)
Rights and permissions
About this article
Cite this article
Yao, Mq., Yang, K., Shen, Jz. et al. Function synthesis algorithm based on RTD-based three-variable universal logic gates. Frontiers Inf Technol Electronic Eng 18, 1654–1664 (2017). https://doi.org/10.1631/FITEE.1601730
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601730
Keywords
- Resonant tunneling device (RTD)
- Disjunctive decomposition algorithm
- Universal logic gate
- Truth value matrix
- Function synthesis algorithm