Skip to main content
Log in

Function synthesis algorithm based on RTD-based three-variable universal logic gates

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Compared with complementary metal–oxide semiconductor (CMOS), the resonant tunneling device (RTD) has better performances; it is the most promising candidate for next-generation integrated circuit devices. The universal logic gate is an important unit circuit because of its powerful logic function, but there are few function synthesis algorithms that can implement an n-variable logical function by RTD-based universal logic gates. In this paper, we propose a new concept, i.e., the truth value matrix. With it a novel disjunctive decomposition algorithm can be used to decompose an arbitrary n-variable logical function into three-variable subset functions. On this basis, a novel function synthesis algorithm is proposed, which can implement arbitrary n-variable logical functions by RTD-based universal threshold logic gates (UTLGs), RTD-based three-variable XOR gates (XOR3s), and RTD-based three-variable universal logic gate (ULG3s). When this proposed function synthesis algorithm is used to implement an n-variable logical function, if the function is a directly disjunctive decomposition one, the circuit structure will be very simple, and if the function is a non-directly disjunctive decomposition one, the circuit structure will be simpler than when using only UTLGs or ULG3s. The proposed function synthesis algorithm is straightforward to program, and with this algorithm it is convenient to implement an arbitrary n-variable logical function by RTD-based universal logic gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altun, M., Riedel, M.D., 2012. Logic synthesis for switching lattices. IEEE Trans. Comput., 61(11): 1588–1600. https://doi.org/10.1109/TC.2011.170

    Article  MathSciNet  Google Scholar 

  • Beiu, V., Quintana, J.M., Avedillo, M.J., 2003. VLSI imple-mentations of threshold logic—a comprehensive survey. IEEE Trans. Neur. Networks, 14(5): 1217–1243. https://doi.org/10.1109/TNN.2003.816365

    Article  Google Scholar 

  • Bertacco, V., Damiani, M., 1997. The disjunctive decomposi-tion of logic functions. IEEE/ACM Int. Conf. on Computer-Aided Design, p.78–82. https://doi.org/10.1109/ICCAD.1997.643371

    Google Scholar 

  • Czajkowski, T.S., Brown, S.D., 2008. Functionally linear decomposition and synthesis of logic circuits for FPGAs. Comput.-Aided Des. Integr. Circ. Syst., 27(12): 2236–2249. https://doi.org/10.1109/TCAD.2008.2006144

    Article  Google Scholar 

  • Falkowski, B.J., Kannurao, S., 2001. Analysis of disjoint decomposition of balanced Boolean functions through the Walsh spectrum. Comput. Dig. Techn., 148(2): 71–78. https://doi.org/10.1049/ip-cdt:20010205

    Google Scholar 

  • Fan, D.L., Sharad, M., Roy, K., 2014. Design and synthesis of ultralow energy spin-memristor threshold logic. IEEE Trans. Nanotechnol., 13(3): 574–583. https://doi.org/10.1109/TNANO.2014.2312177

    Article  Google Scholar 

  • Files, C.M., Perkowski, M.A., 2000. New multivalued func-tional decomposition algorithms based on MDDs. Comput.-Aided Des. Integr. Circ. Syst., 19(9): 1081–1086. https://doi.org/10.1109/43.863648

    Article  Google Scholar 

  • Hrynkiewicz, E., Kolodzinski, S., 2010. An Ashenhurst dis-joint and non-disjoint decomposition of logic functions in Reed-Muller spectral domain. Proc. 17th Int. Conf. on Mixed Design of Integrated Circuits and Systems, p.200–204.

    Google Scholar 

  • Iwai, H., 2013. Future of nano CMOS technology. Proc. Symp. on Microelectronics Technology and Devices, p.1–10.

    Google Scholar 

  • Kolodzinski, S., Hrynkiewicz, E., 2009. An utilisation of Boolean differential calculus in variables partition cal-culation for decomposition of logic functions. 12th Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems, p.34–37. https://doi.org/10.1109/DDECS.2009.5012095

    Google Scholar 

  • Likharev, K.K., 2008. Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Opto-electron., 3(3): 203–230. https://doi.org/10.1166/JNO.2008.301

    Article  Google Scholar 

  • Liu, M.C., Lin, D.D., Pei, D.Y., 2011. Fast algebraic attacks and decomposition of symmetric Boolean functions. IEEE Trans. Inform. Theory, 57(7): 4817–4821. https://doi.org/10.1109/TIT.2011.2145690

    Article  MathSciNet  Google Scholar 

  • Mazumder, P., Kulkarni, S., Bhattacharya, M., 1998. Digital circuit applications of resonant tunneling devices. Proc. IEEE, 86(4): 664–686. https://doi.org/10.1109/5.663544

    Article  Google Scholar 

  • Mirhoseini, S.M., Sharifi, M.J., Bahrepour, D., 2010. New RTD-based general threshold gate topologies and appli-cation to three-input XOR logic gates. J. Electr. Comput. Eng., 35(1): 1–4. https://doi.org/10.1155/2010/463925

    Google Scholar 

  • Muramatsu, N., Okazaki, H., Waho, T., 2005. A novel oscil-lation circuit using a resonate-tunneling diode. IEEE Int. Symp. on Circuits and Systems, p.2341–2344. https://doi.org/10.1109/ISCAS.2005.1465094

    Google Scholar 

  • Ngwira, S.M., Tshabalala, P., 2002. Neural network analysis for the identification of optimal variable orderings in the decomposition of complex logic functions. Comput. Dig. Techn., 149(5): 240–244. https://doi.org/10.1049/ip-cdt:20020405

    Google Scholar 

  • Nikodem, M., 2013. Synthesis of multithreshold threshold gates based on negative differential resistance devices. IET Circ. Dev. Syst., 7(5): 232–242. https://doi.org/10.1049/iet-cds.2012.0368

    Article  Google Scholar 

  • Wei, Y., Shen, J.Z., 2011. Novel universal threshold logic gate based on RTD and its application. Microelectron. J., 42: 851–854. https://doi.org/10.1016/j.mejo.2011.04.005

    Article  Google Scholar 

  • Yao, M.Q., Yang, K., Xu, C.Y., et al., 2015. Design of a novel RTD-based three-variable universal logic gate. Front. Inform. Technol. Electron. Eng., 16(8): 694–699. https://doi.org/10.1631/FITEE.1500102

    Article  Google Scholar 

  • Zhang, R., Gupta, P., Zhong, L., 2005. Threshold network synthesis and optimization and its application to nano-technologies. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 24(1): 107–118. https://doi.org/10.1109/TCAD.2004.839468

    Article  Google Scholar 

  • Zheng, Y.X., Huang, C., 2009. Complete logic functionality of reconfigurable RTD circuit elements. IEEE Trans. Nanotechnol., 8(5): 631–642. https://doi.org/10.1109/TNANO.2009.2016563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-qun Yao.

Additional information

Project supported by the Zhejiang Provincial Natural Science Foun-dation, China (No. LY15F010011) and the National Natural Science Foundation of China (Nos. 61771179, 61471314, and 61271124)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Mq., Yang, K., Shen, Jz. et al. Function synthesis algorithm based on RTD-based three-variable universal logic gates. Frontiers Inf Technol Electronic Eng 18, 1654–1664 (2017). https://doi.org/10.1631/FITEE.1601730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601730

Keywords

CLC number